Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamen.docx
Скачиваний:
96
Добавлен:
28.03.2016
Размер:
1.24 Mб
Скачать

23. Кз в линии без потерь.

 Режим короткого замыкания (). Распределение комплексных напряжения и тока выражается формулами:

И в этом случае в линии наблюдаются стоячие волны, однако теперь узел напряжения расположен в конце линии (рис. 25.5), а распределение тока в этой точке имеет пучность.

Рис. 25.5

Как и при холостом ходе, передача энергии по линии в целом в этом режиме отсутствует. Для входного сопротивления из общей формулы получим Zвх =jZ tg l. Оно также имеет чисто реактивный характер и в зависимости от длины линии может быть индуктивным или емкостным.

Сопоставляя оба рассмотренных режима (х. х. и к. з.), можно заключить, что соотношение между входными сопротивлениями в обоих режимах существенно зависит от волновой длины линииl/ = l/2. При l/ <1/8 (l < /4) имеем Zвх. к.з. <  Zвх. х.х., однако при /4 < l < /2 это неравенство изменяется на обратное; для четвертьволновой линии (l = /2) Zвх. х.х. = 0, аZвх. к.з. = . Этот парадоксальный результат объясняется тем, что при холостом ходе в начале линии имеем узел напряжения, а при коротком замыкании — узел тока.

24. Линии без искажения.

Линией без потерь называется линия, у которой первичные параметры  и  равны нулю. В этом случае, как было показано ранее,  и . Таким образом,

 ,

откуда .

Раскроем гиперболические функции от комплексного аргумента :

Тогда для линии без потерь, т.е. при , имеют место соотношения:

   и  .

Таким образом, уравнения длинной линии в гиперболических функциях от комплексного аргумента для линии без потерь трансформируются в уравнения, записанные с использованием круговых тригонометрических функций от вещественного аргумента:

(17)

.     

(18)

Строго говоря, линия без потерь (цепь с распределенными параметрами без потерь) представляет собой идеализированный случай. Однако при выполнении  и , что имеет место, например, для высокочастотных цепей, линию можно считать линией без потерь и, следовательно, описывать ее уравнениями (17) и (18).

 

25 Отражения волн от конца линии.

26. Переходные процессы при включении на постоянное напряжение разомкнутой и замкнутой на конце линии

При замыкании рубильника (см. рис. 2) напряжение в начале линии сразу же достигает величины , и возникают прямые волны прямоугольной формы напряжения  и тока , перемещающиеся вдоль линии со скоростью V (см. рис. 3,а).Во всех точках линии, до которых волна еще не дошла, напряжение и ток равны нулю.Точка, ограничивающая участок линии, до которого дошла волна, называется фронтом волны. В рассматриваемом случае во всех точках линии, пройденных фронтом волны, напряжение равно , а ток - .

Отметим, что в реальных условиях форма волны, зависящая от внутреннего сопротивления источника, параметров линии и т.п., всегда в большей или меньшей степени отличается от  прямоугольной.

Кроме того, при подключении к линии источника с другим законом изменения напряжения форма волны будет иной. Например, при экспоненциальном характере изменения напряжения источника (рис. 4,а) волна будет иметь форму на рис. 4,б.

В рассматриваемом примере с прямоугольной волной напряжения при первом пробеге волны напряжения и тока (см. рис. 3,а) независимо от нагрузки имеют значения соответственно  и , что связано с тем, что волны еще не дошли до конца линии, и, следовательно, условия в конце линии не могут влиять на процесс.

В момент времени  волны напряжения и тока доходят до конца линии длиной l, и нарушение однородности обусловливает появление обратных (отраженных) волн. Поскольку в конце линия разомкнута, то

 ,

откуда  и .

В результате (см. рис. 3,б) напряжение в линии, куда дошел фронт волны, удваивается, а ток спадает до нуля.

В момент времени , обратная волна напряжения, обусловливающая в линии напряжение , приходит к источнику, поддерживающему напряжение . В результате возникает волна напряжения  и соответствующая волне тока  (см. рис. 3,в).

В момент времени  волны напряжения и тока подойдут к концу линии. В связи с ХХ  и  (см. рис. 3,г). Когда эти волны достигнут начала линии, напряжение и ток в ней окажутся равными нулю. Следовательно, с этого момента переходный процесс будет повторяться с периодичностью .

В случае короткозамкнутой на конце линии в интервале времени  картина процесса соответствует рассмотренной выше. При , поскольку в конце линии  и , что приведет к возрастанию тока в линии за фронтом волны до величины . При  от источника к концу линии будет двигаться волна напряжения  и соответствующая ей волна тока , обусловливающая ток в линии, равный , и т. д. Таким образом, при каждом пробеге волны ток в линии возрастает на .

Отметим, что в реальном случае, т.е. при наличии потерь мощности, напряжение в линии в режиме ХХ постепенно выйдет на уровень, определяемый  напряжением источника, а ток в режиме КЗ ограничится активным сопротивлением и проводимостью линии, а также внутренним сопротивлением источника.

 27 Переходные процессы.

Под переходным (динамическим, нестационарным) процессом или режимом в электрических цепях понимается процесс перехода цепи из одного установившегося состояния (режима) в другое. При установившихся, или стационарных, режимах в цепях постоянного тока напряжения и токи неизменны во времени, а в цепях переменного тока они представляют собой периодические функции времени. Установившиеся режимы при заданных и неизменных параметрах цепи полностью определяются только источником энергии. Следовательно, источники постоянного напряжения (или тока) создают в цепи постоянный ток, а источники переменного напряжения (или тока) – переменный ток той же частоты, что и частотаисточника энергии.

Переходные процессы возникают при любых изменениях режима электрической цепи: при подключении и отключении цепи, при изменении нагрузки, при возникновении аварийных режимов (короткое замыкание, обрыв провода и т.д.). Изменения в электрической цепи можно представить в виде тех или иных переключений, называемых в общем случае коммутацией. Физически переходные процессы представляют собой процессы перехода от энергетического состояния, соответствующего до коммутационному режиму, к энергетическому состоянию, соответствующему после коммутационному режиму.

Переходные процессы обычно быстро протекающие: длительность их составляет десятые, сотые, а иногда и миллиардные доли секунды. Сравнительно редко длительность переходных процессов достигает секунд и десятков секунд. Тем не менее изучение переходных процессов весьма важно, так как позволяет установить, как деформируется по форме и амплитуде сигнал, выявить превышения напряжения на отдельных участках цепи, которые могут оказаться опасными для изоляции установки, увеличения амплитуд токов, которые могут в десятки раз превышать амплитуду тока установившегося периодического процесса, а также определять продолжительность переходного процесса. С другой стороны, работа многих электротехнических устройств, особенно устройств промышленной электроники, основана на переходных процессах. Например, в электрических нагревательных печах качество выпускаемого материала зависит от характера протекания переходного процесса. Чрезмерно быстрое нагревание может стать причиной брака, а чрезмерно медленное отрицательно оказывается на качестве материала и приводит к снижению производительности.

28 общий метод расчёта переходных процессов в однородной линии.

Следует отметить, что, поскольку линейная цепь охвачена единым переходным процессом, корни характеристического уравнения являются общими для всех свободных составляющих напряжений и токов ветвей схемы, параметры которых входят в характеристическое уравнение. Поэтому по первому способу составления характеристического уравнения в качестве переменной, относительно которой оно записывается, может быть выбрана любая.

Применение второго и третьего способов составления характеристического уравнения рассмотрим на примере цепи рис. 1.

Составление характеристического уравнения по методу входного сопротивления заключается в следующем:

записывается входное сопротивление цепи на переменном токе;

jw заменяется на оператор р;

полученное выражение  приравнивается к нулю.

Уравнение

совпадает с характеристическим.

Следует подчеркнуть, что входное сопротивление может быть записано относительно места разрыва любой ветви схемы. При этом активный двухполюсник заменяется пассивным по аналогии с методом эквивалентного генератора. Данный способ составления характеристического уравнения предполагает отсутствие в схеме магнитосвязанных ветвей; при наличии таковых необходимо осуществить их предварительное развязывание.

Для цепи на рис. 1 относительно зажимов источника

 .

Заменив jw на р и приравняв полученное выражение к нулю, запишем

или

.

(1)

При составлении характеристического уравнения на основе выражения главного определителя число алгебраических уравнений, на базе которых он записывается, равно числу неизвестных свободных составляющих токов. Алгебраизация исходной системы интегро-дифференциальных уравнений, составленных, например, на основании законов Кирхгофа или по методу контурных токов, осуществляется заменой символов дифференцирования и интегрирования соответственно на умножение и деление на оператор р. Характеристическое уравнение получается путем приравнивания записанного определителя к нулю. Поскольку выражение для главного определителя не зависит от правых частей системы неоднородных уравнений, его составление можно производить на основе системы уравнений, записанных для полных токов.

Для цепи на рис. 1 алгебраизованная система уравнений на основе метода контурных токов имеет вид

Отсюда выражение для главного определителя этой системы

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]