
- •1.Основные физические законы электромеханического преобразователя энергии.
- •1.1 Закон электромагнитной индукции.
- •1.2 Закон электромагнитного взаимодействия.
- •1.3 Законы электромеханики.
- •1.4 Сердечники магнитопроводов электрических машин.
- •1.5 Обмотки электрических машин.
- •1.6 Потери энергии и коэффициент полезного действия
- •1.7 Нагревание и охлаждение электрических машин
- •2. Трансформаторы
- •2.1 Назначение и общие сведения о трансформаторах.
- •2.2 Основы теории однофазного трансформатора. Режим холостого хода.
- •2.3 Векторная диаграмма трансформатора в режиме холостого хода.
- •2.4 Уравнения, схема замещения нагруженного однофазного трансформатора. (Рабочий режим).
- •2.5 Изображение векторной диаграммы приведенного трансформатора.
- •2.6 Опытное определение параметров схемы замечания трансформаторов. Опыты холостого хода и короткого замыкания.
- •2.7 Вторичное напряжение трансформатора. Внешняя характеристика.
- •2.8 Мощность потерь и к.П.Д. Трансформатора.
- •2.9 Магнитные системы трехфазных трансформаторов.
- •2.10 Схемы и группы соединений трёхфазных трансформаторов.
- •2.11 Параллельная работа трансформаторов.
- •2.12 Автотрансформаторы.
- •Специальные трансформаторы
- •2.13.1 Трансформаторы частоты.
- •2.13.2 Трансформатор числа фаз.
- •2.13.3 Трансформаторы для электрических печей.
- •2.13.4 Сварочные трансформаторы.
- •2.13.6 Трансформаторы звуковой и ультразвуковой частот. Реакторы.
- •2.13.7 Измерительные трансформаторы.
- •2.13.8 Трансформаторы тока.
- •2.13.9 Трансформаторы напряжения.
- •Асинхронные электрические машины.
- •3.1 Области применения. Конструкция асинхронных машин.
- •3.2 Обмотки асинхронных машин.
- •3.3 Энергетические диаграммы асинхронных машин.
- •3.4 Схема замещения трехфазной асинхронной машины.
- •3.5 Опытное определение параметров схемы замещения асинхронной машины.
- •3.6 Электромагнитный момент асинхронной машины.
- •3.7 Механические характеристики электрических машин и производственных механизмов
- •3.8 Совместная механическая характеристика электрического двигателя и производственного механизма.
- •3.9 Пуск асинхронных двигателей.
- •3.10 Регулирование частоты вращения асинхронных двигателей.
- •3.11 Однофазные двигатели
- •3.12 Асинхронные машины автоматических устройств.
- •3.13 Специальные асинхронные машины.
2.12 Автотрансформаторы.
В трансформаторах обычного типа первичная и вторичная обмотка связаны между собой только магнитным потоком. Но можно выполнить трансформатор так, чтобы передача энергии осуществлялась как магнитным, так и за счет электрической связи между первичной и вторичной обмотки. Такой трансформатор называется автотрансформатором. Автотрансформатор может быть понижающий или понижающий, однофазным или трехфазным (рис. 2.24).
Рисунок 2.24 Автотрансформаторы: а) понижающий; б) повышающий.
Основное
преимущество автотрансформатора перед
трансформатором – его меньшая стоимость
– сказывается тем сильнее, чем ближе
коэффициент трансформатора к единице.
Однако нужно имеет в виду, что при
т. е. при n=1,
энергия непосредственно передается из
первичной сети во вторичную без какой
либо трансформации. При n>2
разница между автотрансформаторам и
обычным трансформатором сглаживается,
поэтому в силовых установках, как
правило, n
= 1.25
2.
В энергетических системах, везде где необходимо преобразовать близкие напряжения (110 и 220, 220 и 330, 330 и 500, 500 и 750 кВ) используется только автотрансформаторы. Для энергетических установок часто требуется создание установок, преобразующих напряжения и имеющих предельные мощности. Габариты трансформаторов и автотрансформаторов лимитируются железнодорожными габаритами и возможностями доставки их с завода изготовителя на место эксплуатации. Автотрансформатор из-за меньшего расхода активных материалов в заданных габаритах удается выполнить на большую мощность, чем обычный трансформатор.
КПД автотрансформатора всегда выше, чем обычного трансформатора.
Большинство деталей автотрансформатора и трансформатора конструктивно не отличаются друг от друга. Обычно активная часть автотрансформатора помещается в бак с маслом.
Автотрансформатор является весьма ценной конструкцией и при выполнении трансформаторов небольшой мощности и близких напряжений.
Автотрансформаторы применяются и в низковольтных сетях в качестве лабораторных регуляторов напряжения небольшой мощности (ЛАТР). В таких автотрансформаторах регулирования напряжения осуществляется при перемещений скользящего контакта по виткам обмотки. При замыкании соседних витков в ЛАТРе не происходит витковых замыканий, т.к. токи сети и нагрузки в совмещенной обмотке автотрансформатора близки друг к другу и направлены встречно.
В трехфазных автотрансформаторах первичные обмотки чаще всего соединяются в звезду, нейтральная точка, которая может быть, заземлена или использована для присоединения нейтрального провода.
Автотрансформаторы применяются для пуска синхронных и асинхронных двигателей, как делители напряжения и т.д.
Наряду с указанными преимущественными, автотрансформаторы имеют недостатки, главные из которых:
- возможности попадания высокого напряжения в сеть низкого напряжения вследствии непосредственного электрического соединения первичной и вторичной обмотки; необходимость выполнения изоляции обеих обмоток на большее напряжение, т.к. обмотки имеют электрическую связь;
- более тяжелые условия короткого замыкания. Это вызывает необходимость ограничить токи коротких замыканий в сетях за счет других элементов системы.
При анализе рабочих процессов в автотрансформаторах максимально используется теория обычных трансформаторов.