Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопрос 1.docx
Скачиваний:
100
Добавлен:
25.03.2016
Размер:
84.84 Кб
Скачать

34.Кравткая характеристика ионизирующих излучений, деление на виды.

Радиационные поражения возникают в результате воздействия на организм различных видов ионизирующих излучений, которые подразделяются на два класса: а) электромагнитные и б) корпускулярные.

К электромагнитным относят рентгеновские лучи, гамма-лучи радиоактивных элементов и тормозное излучение, возникающее при прохождении через вещество сильно ускоренных заряженных частиц. Электромагнитные излучения имеют ту же природу, что и видимый свет, отличаясь от него более короткой длиной волны, а соответственно и более высокой энергией и проникающей способностью.

Корпускулярные излучения представляют собой поток ядерных частиц, характеризующихся наличием определенной массы и заряда (а- и р-частицы, протоны, дейтроны и др.). К корпускулярным излучениям относят также и нейтроны — ядерные частицы, не имеющие заряда.

Проникающая способность ионизирующих излучений зависит от их природы, заряда и энергии, а также от плотности облучаемого вещества.

Рентгеновское и гамма-излучение обладают наибольшей проникающей способностью, измеряемой для живой ткани десятками сантиметров. Чем выше энергия излучения, тем выше его проникающая способность.

При взаимодействии с веществом энергия квантов рентгеновского и гамма-излучения или полностью поглощается атомом с образованием свободного электрона (фотоэлектрический эффект), или передается частично выбиваемому электрону в результате упругого столкновения между падающим фотоном и электроном. В результате образуются быстролетящие электроны, расходующие свою энергию на ионизацию молекул вещества. При высокой энергии фотонов рентгеновского и гамма-излучения их взаимодействие с веществом вызывает образование в поле ядра пары электрон — позитрон. При облучении биологических объектов электромагнитными излучениями ядерного взрыва наибольшее значение имеет поглощение энергии путем комптон-эффекта.

Бета-частицы представляют собой электроны, несущие отрицательный заряд, и позитроны, имеющие положительный заряд. Проникающая способность р-частицы в воздухе измеряется метрами, а в живых тканях — долями сантиметра (2—5 мм). Бета-частицы взаимодействуют в основном с электронами электронных оболочек атомов, вызывая при этом ионизацию последних.

Альфа-частицы представляют собой положительно заряженные ядра гелия, состоящие из двух протонов и двух нейтронов. Они вызывают ионизацию высокой плотности и обладают малой проникающей способностью. В воздухе пробег а-частиц составляет несколько сантиметров, в тканях организма — сотые доли миллиметра.

Нейтроны являются ядерными частицами, не имеющими заряда. По энергии нейтроны подразделяют на несколько групп: медленные (с энергией ниже 0,5 эВ), промежуточные (0,5 эВ — 20 КэВ), быстрые (20 КэВ — 20 МэВ), сверхбыстрые (с энергией более 20 МэВ).

Являясь нейтральными частицами, нейтроны непосредственно не вызывают ионизации атомов, а вступают во взаимодействие с их ядрами, которое протекает в форме двух процессов: рассеяния (упругого и неупругого) и поглощения (радиационного захвата). При неупругом рассеянии происходит передача ядру значительной части энергии нейтрона, что приводит к сильному возбуждению ядра и ядерным реакциям трансформации элементов с испусканием элементарных частиц (нейтронов, протонов, а-частиц). Этот вид взаимодействия наиболее характерен для сверхбыстрых и быстрых нейтронов при столкновении с ядрами относительно тяжелых элементов. При упругом соударении (по типу столкновения твердых шаров) возникают так называемые ядра отдачи, скорость которых тем больше, чем меньше их масса. Наибольшее количество энергии нейтронов передается ядрам легких элементов, в частности водороду. Упругое рассеяние является основным типом взаимодействия с веществом быстрых нейтронов. В результате этого образуются протоны и ядра отдачи, являющиеся заряженными частицами, способными вызывать сильную ионизацию среды.

Для тепловых и промежуточных нейтронов преоблада

ющей формой взаимодействия с ядрами атомов становится радиационный захват. При этом образуются радиоактивные изотопы С, г4, Б, О, Иа, Р, распад которых сопровождается образованием вторичных гамма-квантов (наведенная радиоактивность). Последняя не вносит существенного вклада в поражающее действие нейтронов, но имеет диагностическое значение, характеризуя общую дозу нейтронного облучения.

Образовавшиеся в процессе взаимодействия нейтронов с ядрами заряженные частицы (протоны и ядра отдачи, электроны, а-частицы) и гамма-излучение являются непосредственной причиной ионизации атомов и молекул. Нейтронное излучение характеризуется высокой способностью вызывать молекулярные повреждения в веществе, состоящем преимущественно из легких элементов. К таким веществам относятся живые ткани, содержащие в основном легкие элементы. Из них водород по числу атомов занимает первое место.

Таким образом, ионизирующие излучения, взаимодействуя с веществом, вызывают ионизацию и возбуждение атомов и молекул, сопровождающееся нарушением химических связей и возникновением высокореакционных продуктов.

Биологический эффект ионизирующих излучений прежде всего связан с количеством поглощенной энергии, т. е. с дозой облучения. Оценка дозы производится различными физическими и химическими способами. Различают экспозиционную дозу, под которой понимают ионизирующую способность излучения в воздухе, и поглощенную дозу, представляющую энергию любого вида излучения (включая нейтроны), поглощенную в единице массы вещества. Единицей измерения экспозиционной дозы для гамма- и рентгеновского излучения служит кулон на килограмм (Кл/кг). Поглощенная доза излучения измеряется в джоулях на килограмм (Дж/кг). Последней единице измерения дано название «Грэй» (Гй)1 в честь английского физика Л. Грэя (1 Гй=100 рад).