Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Современные теории структурной динамики.doc
Скачиваний:
20
Добавлен:
23.03.2016
Размер:
176.64 Кб
Скачать

1.3. Диссипативные структуры и. Пригожина

В теории диссипативных структур, развиваемой И. Пригожиным и его школой, первоначально изучались процессы самоорганизации в физико-химических системах [18-20]. До работ Пригожина в естествознании в основном изучались равновесные структуры, которые можно рассматривать как результат статистической компенсации активности микроскопических элементов (молекул, атомов).

Если систему с равновесной структурой изолировать от внешней среды, то ввиду инертности данная равновесная структура может существовать бесконечно долго. Однако в биологических и социальных системах ситуация, как правило, другая: система незамкнута, открыта и, более того, существует потому, что она открыта, питается потоками вещества, энергии, информации, поступающими из внешнего мира. В открытых системах случайные флуктуации «пытаются» вывести систему из равновесного состояния. В реальных системах незначительные флуктуации, как правило, подавляются, и система остается стабильной. Если же силы, действующие на систему, становятся достаточно большими и вынуждают ее достаточно далеко уйти от положения равновесия, то состояние системы становится неустойчивым. Некоторые флуктуации могут не затухать, а усиливаться и завладевать всей системой. В результате действия положительной обратной связи флуктуации усиливаются и могут привести к разрушению существующей структуры и переходу в новое состояние. Причем возможен переход и на более высокий уровень упорядоченности, называемый диссипативной структурой. Возникает явление самоорганизации

Исследуя динамику сильно неравновесных систем, И. Пригожин приходит к следующим выводам: «Когда система, эволюционируя, достигает точки бифуркации, детерминистическое описание становится непригодным. Флуктуация вынуждает систему выбрать ту ветвь, по которой будет происходить дальнейшая эволюция системы. Переход через бифуркацию - такой же случайный процесс, как бросание монеты. Существование неустойчивости можно рассматривать как результат флуктуации, которая сначала была локализована в малой части системы, а затем распространилась и привела к новому макроскопическому состоянию» [20, с. 56].

Принципы, разработанные Пригожиным для анализа химических процессов, были распространены на широкий класс явлений в физике, молекулярной биологии, процессов эволюции в биологии, а затем и социологии. В настоящее время в естественных науках ведется активное исследование явлений, связанных с возникновением структур, самоорганизацией в простейших нелинейных средах. Делаются попытки выявить прообразы появления организации и в более сложных, в частности социальных, системах. Ученые ведут исследования простейших моделей, анализ которых не может заменить изучение сложных социальных процессов, но может дать исследователям полезную подсказку, помочь подметить скрытые закономерности, сформулировать плодотворные гипотезы.

В работе И. Пригожина и И. Стенгерс [20] рассматривается понятие логистической эволюции, т.е. процессов, описываемых логистическим уравнением. Логистическая модель эволюции в настоящее время исследуется в различных областях науки.

Как утверждается в [27], хаотические колебания могут возникнуть в период замены старого уклада на новый. Возникновение нестабильности может интерпретироваться как случайный поиск равновесного состояния системой, оказавшейся в ситуации, когда растущие возможности не могут быть реализованы в рамках существующей ниши. Данная модель демонстрирует чередование режимов порядка и хаоса. В период быстрого экономического роста многие компании консолидируются, интегрируются. Корпорации работают как часы, подчиняясь эффективному централизованному управлению. В стадии насыщения под давлением инноваций экономическая система попадает в полосу хаоса.

Авторы [20] полагают, что модели, построенные на основе понятия «порядок через флуктуации», будут способствовать более точной формулировке «сложного взаимодействия между индивидуальным и коллективным аспектами поведения». Модели такого типа «открывают перед нами неустойчивый мир, в котором малые причины порождают большие следствия, но мир этот не произволен. Напротив, причины усиления малых событий - вполне «законный» предмет рационального анализа... Если флуктуация становится неуправляемой, это еще не означает, что мы не можем локализовать причины неустойчивости, вызванные усилением флуктуации» [20, с. 270].

В состоянии хаоса поведение системы непредсказуемо. Точнее, нельзя предсказать конкретное состояние, проследить заданную траекторию на длительном временном интервале. Однако вероятностные, усредненные характеристики могут быть спрогнозированы [12].

Странный аттрактор, определяющий хаотическое поведение системы, часто занимает ограниченную область фазового пространства. Поэтому, хотя траектории разбегаются с экспоненциальной скоростью, убежать за границы странного аттрактора они не могут. Следовательно, определение границ области хаоса может позволить получить оценки поведения системы. Чувствительность такой системы позволяет вывести ее из хаотического состояния с помощью очень малых, но точных воздействий [16].

Отметим, что далеко не все теоретики считают, что хаоса следует избегать. Верящие в животворную силу хаоса, наоборот, полагают, что чем он окажется обширнее, глубже, тем более эффективный порядок смогут породить творческие силы самоорганизации.

Нельзя не согласится с доктором философских наук В.П.Бранским, заметившим, что «хотя синергетический подход к социальным явлениям завоевал в последней четверти XX века широкую популярность, тем не менее пока он во многих случаях не выходит за рамки философской публицистики» [3, с. 148].

Конечно, знание основных концепций синергетики необходимо современному специалисту, но для практических целей полезней не углубление философской рефлексии, а развитие нелинейной интуиции.