Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций.doc
Скачиваний:
642
Добавлен:
22.03.2016
Размер:
9.45 Mб
Скачать

3.4. Потери мощности в трансмиссии. Кпд трансмиссии

Мощность, подводимая от двигателя к ведущим колесам авто­мобиля, частично затрачивается в трансмиссии на преодоление трения

Рис. 3.3. Графическая иллюстрация

потерь мощности в трансмиссии

автомобиля:

1 —- одно из возможных значений скорости автомобиля

(сухого или жидкостного).

Потери мощности на трение в трансмиссии (рис. 3.3)

Величина Nтрен включает в себя два вида потерь: механические и гидравлические.

Механические потери обусловлены трением в зубчатых зацеплениях,

карданных шарнирах, подшипниках, манжетах (сальниках) и т. п. Величина этих потерь зависит главным образом от качества обработки и смазки поверхностей трущихся деталей.

Гидравлические потери мощности связаны с перемешиванием и разбрызгиванием масла в механизмах трансмиссии (коробка передач, раздаточная коробка, ведущие мосты и др.). Величина потерь этого

вида зависит от вязкости и уровня масла, залитого в механизмы трансмиссии, частоты вращения валов и шестерен. 29

Как указывалось в подразд. 3.3, потери мощности в трансмис­сии оценивают с помощью КПД трансмиссии, который можно определить следующим образом:

КПД трансмиссии равен произведению КПД механизмов, входящих в ее состав:

где k , кар , д , г — КПД соответственно коробки передач, карданной передачи, дополнительной коробки передач и главной передачи.

Ниже приведены значения КПД трансмиссии различных ти­пов автомобилей и ее отдельных механизмов:

Легковые автомобили .......................................... 0,90...0,92

Грузовые автомобили и автобусы........................0,82...0,85

Автомобили повышенной

проходимости......................................................... 0,80...0,85

Коробка передач:

прямая передача ................................................... 0,98...0,99

понижающая передача.......................................... 0,94...0,96

Карданная передача .............................................. 0,97...0,98

Главная передача:

одинарная .............................................................. 0,96...0,97

двойная................................................................... 0,92...0,94

КПД трансмиссии не остается постоянным в течение всего срока эксплуатации автомобиля. В начале эксплуатации нового автомобиля детали механизмов трансмиссии прирабатываются, и ее КПД в течение некоторого времени повышается. Далее на протяжении длительного периода он остается почти постоянным, а затем начинает снижаться вследствие изнашивания деталей, отклонения их размеров от номинальных и образования зазоров. После капи­тального ремонта автомобиля и последующей приработки дета­лей КПД трансмиссии вновь возрастает, но уже не достигает пре­жнего значения.

Для автомобилей, имеющих в трансмиссии гидравлические передачи (гидротрансформаторы, гидромуфты), КПД трансмиссии равен произведению механического M и гидравлического гид КПД:

Гидравлический КПД существенно зависит от угловой скорос­ти валов и передаваемого момента.

3.5. Радиусы колес автомобиля

У колес автомобиля (рис. 3.4) различают следующие радиусы: статический rс, динамический rД и радиус качения rкач.

Статическим радиусом называется расстояние от оси непод­вижного колеса до поверхности дороги. Он зависит от нагрузки, приходящейся на колесо, и давления воздуха в шине. Статичес­кий радиус уменьшается при возрастании нагрузки и снижении давления воздуха в шине, и наоборот.

Динамическим радиусом называется расстояние от оси катяще­гося колеса до поверхности дороги. Он зависит от нагрузки, дав­ления воздуха в шине, скорости движения и момента, передавае­мого через колесо. Динамический радиус возрастает при увеличении скорости движения и уменьшении передаваемого момента, и наоборот.

Радиусом качения называется отношение линейной скорости оси колеса к его угловой скорости:

Радиус качения, зависящий от нагрузки, давления воздуха в шине, передаваемого момента, пробуксовывания и проскальзывания колеса, определяется экспериментально или вычисляется по формуле

(3.13.)

где nкчисло полных оборотов колеса; SК — путь, пройденный колесом за полное число оборотов.

Из выражения (3.13) следует, что при полном буксовании колеса (Sk= 0) радиус качения rкач = 0, а при полном скольжении (nк = 0) гкач → оз.

Как показали исследования, на дорогах с твердым покрытием и хорошим сцеплением радиус качения, статический и динами­ческий радиусы отличаются друг от друга незначительно. Поэтому можно

считать, что они практически равны, т. е. rс~rД~ rкач.

При выполнении расчетов в дальнейшем будем использовать это приближенное значение. Соответствующую величину назовем радиусом колеса и обозначим rk.

Для различных типов шин радиус колеса может быть определен по ГОСТ, в котором регламентированы статические радиусы для ряда значений нагруз-

Рис. 3.4. Радиусы колеса 31

ки и давления воздуха в шинах. Кроме того, радиус колеса, м, можно рассчитать по номинальным размерам шины, используя выражение

(3.14)

Рис. 3.4. Радиусы колеса

где d — диаметр обода колеса, м; Вш — ширина профиля шины, м; λш=0,8...0,9 — коэффициент смятия шины.

Формула (3.14) обеспечивает наиболее точные результаты для самого распространенного типа шин — тороидальных.