Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
книга разработка.docx
Скачиваний:
2416
Добавлен:
21.03.2016
Размер:
5.29 Mб
Скачать

Тема 7. Основные эксплуатационные характеристики залежей нефти

7.1 Термобарическая характеристика залежи. Влияние начальных температуры и давления в залежи и состава ув на возможный ход разработки.

В процессе разработки месторождений в пласте изменяется давление, температура, соотношение объемов нефти и газа, температура, что сопровождается переходом углеводородов из одной фазы в другую. В стволе скважины при передвижении нефти давление быстро меняется, из нефти выделяется большое количество газа и других компонентов (парафина, смол, серы и др.). Для дальнейшей транспортировки нефти к потребителю извлекают максимально возможное количество газовой фазы. Углеводородные газы изменяют объем в зависимости от температуры и давления, находясь в жидком, газовом или двухфазовом состоянии.

Фазовые превращения углеводородов представляются также в координатах «давление – температура». Для однокомпонентной системы кривая точек парообразования и конденсации сливаются, заканчиваясь критической точкой С. Эта точка характеризует наивысшие значения температуры и давления, при которых еще могут существовать две фазы одновременно. Анализируемая зависимость показывает, что одну фазу углеводорода можно перевести в другую, минуя двухфазное состояние, что иллюстрируется графиком (рис.7.1.) по линиям АВДЕF. От точки А газ нагревают до температуры точки В, увеличивают давление до точки Д, затем снижают температуру до точки Е и понижают давление до точки F. Так по указанной цепочке происходит непрерывное изменение свойств газа и вещество приобретает свойства жидкости. Если система многокомпонентная, то она подчинена более сложным зависимостям.

Рассмотрим рис.7.2. Линии АС1 и ВС2 - это кривые упругости паров соответственно более летучего и менее летучего компонентов смеси, оканчивающиеся критическими точками С1 и С2 .

Рис.7.1. Диаграмма фазового состояния этана

На диаграмме изображены три области парожидкостного равновесия, соответствующие трем разным составам бинарной смеси. Если в смеси преобладает компонент 1, то зона двухфазного состояния находится внутри области, ограниченной линией А'С'В'. Здесь А'С' - кривая точек кипения, В'С' -кривая точек росы, С' - критическая точка, координаты которой равны критическим давлению и температуре заданной смеси.

Рис.7.2. Фазовая диаграмма "давление-температура" бинарной системы

При увеличении в составе смеси доли компонента 2 область двухфазного существования смещается вправо и расширяется. Ее максимальные размеры обычно достигаются при примерно равном (эквимолярном) содержании компонентов 1 и 2. Этому случаю соответствует изображенная на рис.7.2 область А" С" В", где А"С", В" С" – соответственно кривые точек кипения и росы; С" - критическая точка.

Преобладание в смеси компонента 2 приводит к тому, что область парожидкостного равновесия смещается ближе к кривой упругости паров этого компонента и сужается. Этому случаю на рис. 7.2 соответствует область А‴ С‴ В‴ , где кривые точек кипения и росы изображены линиями А‴ С‴ и В‴ С‴, смыкающимися в критической точке С‴ .

Для любых составов бинарной системы справа от критической изотермы и вне области двухфазного равновесия смесь находится в газовом состоянии. Если температура ниже критической, то вне двухфазной области смесь находится в жидком состоянии.

В предельных случаях, когда доля одного из компонентов становится равной 1, область двухфазного существования переходит в кривую упругости паров этого компонента.

Пунктирная линия - огибающая критических точек бинарных смесей, начинающаяся в критической точке компонента 1 и оканчивающаяся в критической точке компонента 2. С увеличением содержания менее летучего компонента 2 критическая температура смеси непрерывно растет. Иначе ведет себя критическое давление. Оно вначале увеличивается, достигает максимума и затем снижается. Критическая температура смеси всегда больше ТС1 и меньше ТС2, а критическое давление смеси может значительно превышать критическое давление как 1 -го, так и 2-го компонентов.

Важное отличие двух- и многокомпонентных систем от чистых веществ заключается в том, что критические давление и температура смеси не являются одновременно максимальными значениями давления и температуры, при которых возможно сосуществование равновесных паровой и жидкой фаз. Это видно на примере фазовых диаграмм трех смесей разного состава (см. рис.7.2).

Максимальное давление, при котором для смеси заданного состава возможно существование парожидкостного равновесия, называется криконденбарой. Максимальная температура, при которой для смеси заданного состава возможно существование парожидкостного равновесия, называется крикондентермой.

В частном случае критическое давление может быть равно криконденбаре, но при этом критическая температура будет меньше крикондентермы (см. рис.7.2, критическая точка С").

Существование крикондентермы и криконденбары связано с обратными (ретроградными) явлениями в околокритической области. Рассмотрим эти явления на диаграммах "давление - температура" при фиксированном составе смеси. Зоны ретроградных явлений будут отличаться в зависимости от того, находится находится ли критическая точка слева или справа от точки на фазовой границе, соответствующей криконденбаре (рис.7.3). Критическая точкаобозначена С, a G - точка, соответствующая криконденбаре.

Рис.7.3. Фазовая диаграмма «давление-температура» при

расположении критической точки левее (а) и правее (б) крикондентермы

Рис.7.3,а относится к случаю, когда критическая точка находится слева от точки G . Рассмотрим последовательно два процесса: 1) изобарическое изменение температуры при рC < р < рG и 2) изотермическое изменение давления при ТС < Т < ТМ . Точка М соответствует крикондентерме.

1. Изобарическое изменение температуры при рC < р < рG. Пусть

р = р1, и Т = ТА (точка А). Смесь находится в жидком состоянии. Повышаем температуру. При достижении критической температуры ТС смесь плавно, без образования поверхностей раздела, переходит из жидкого состояния в газовое. В точке D газовая фаза становится насыщенной, т.е. из нее выделяется первая капля жидкости. При дальнейшем повышении температуры протекает ретроградный процесс: конденсируется жидкая фаза, количество которой достигает максимума в точке Е. При увеличении температуры процесс становится прямым, жидкая фаза испаряется, и в точке F исчезает последняя капля.

Таким образом, на отрезке DE при повышении температуры происходит процесс ретроградной конденсации. При понижении температуры на этом отрезке происходит процесс ретроградного испарения жидкой фазы.

Чем ближе давление к критическому или к криконденбаре, тем короче интервал температур, на котором происходят ретроградные явления. Область ретроградных явлений при изобарическом изменении температуры находится внутри замкнутой кривой CEGDC.

2. Изотермическое изменение давление при ТС < Т < ТМ. Пусть Т = Т1 и смесь находится в однофазном газовом состоянии в точке Н. Снижаем давление. В точке L смесь становится насыщенной, из нее выделяется первая капля жидкости. При дальнейшем снижении давления происходит ретроградный процесс: конденсируется жидкая фаза, количество которой достигает максимума в точке S. При уменьшении давления процесс становится прямым; жидкая фаза испаряется и в точке J исчезает. Итак, на отрезке LS при снижении давления происходит процесс ретроградной конденсации. При повышении давления на этом отрезке происходит ретроградное испарение жидкой фазы.

Чем ближе температура к критической или к крикондентерме, тем короче интервал давлений, на котором происходят ретроградные явления. Область ретроградных явлений, наблюдающихся при изотермическом изменении давления, ограничена замкнутой кривой CDGLFMSC. Линия MSC называется кривой максимальной конденсации, так как для любой температуры ТС < Т < ТМ максимальное количество жидкой фазы достигается при давлении, равном ординате соответствующей точки на линии MSC. Это давление называется давлением максимальной конденсации. Линия CDGLFM называется линией ретроградных точек росы. Граница двухфазной области, начинающаяся в точке М и уходящая вниз через точку J, называется линией прямых точек росы.

Таким образом, если критическая точка находится слева от точки G, то область ретроградных явлений, наблюдающихся при изобарическом изменении температуры, является частью более крупной области ретроградных явлений, которые происходят при изотермическом изменении давления.

Рис.7.3.б относится к случаю, когда критическая точка находится справа от точки G, соответствующей криконденбаре. Как и в рассмотренном выше случае (см.рис.7.3.а), процессы изобарического изменения температуры и изотермического изменения давления при определенных термобарических условиях сопровождаются ретроградными явлениями.

Они происходят соответственно в областях, ограниченных замкнутыми линиями CFGEC и CLMSC. Однако в отличие от случая, рассмотренного на рис.7.3. а, в данном случае области ретроградных явлений имеют только одну общую точку - критическую точку С и, кроме того, при изобарическом изменении температуры в области CFGEC (см. рис.7.3. б) происходят иные процессы, чем в области CDGEC на рис.7.3. а.

Рассмотрим процесс изобарического изменения температуры при рС < р < рG . Пусть р = р1 и Т = ТА (точка А). Смесь находится в жидком состоянии. Повышаем температуру. В точке D смесь становится насыщенной жидкой фазой, т.е. из нее выделяется первый пузырек пара. При дальнейшем повышении температуры протекает прямой процесс образования паровой фазы (кипение). Однако в точке Е доля паровой фазы достигает максимума, и при увеличении температуры ее количество монотонно уменьшается, т.е. происходит процесс ретроградной конденсации. В точке F паровая фаза исчезает, вся смесь снова (как в точке D) становится жидкой фазой. Дальнейший нагрев приводит к тому, что при критической температуре ТС смесь плавно переходит из жидкого состояния в газовое без образования поверхностей раздела.

Итак, на отрезке EF при повышении температуры происходит ретроградная конденсация, а при понижении температуры – ретроградное испарение.

В области CLMSC при изотермическом изменении давления происходят ретроградные процессы, аналогичные описанным выше процессам в области CDGLFMSC (см.рис.7.3.а). Изотермическое уменьшение давления сопровождается процессом ретроградной конденсации, а увеличение давления - ретроградным испарением. Линия MSC - кривая максимальной конденсации, CLM - линия ретроградных точек росы, MJN и ее продолжение вниз - линия прямых точек росы.

В заключение обратим внимание на то, что понятия и явления, рассмотренные при описании фазовых диаграмм «давление – температура» бинарных смесей, остаются справедливыми и для многокомпонентных систем.

Фазовое состояние системы «нефть–газ». В зависимости от состава газа и нефти, пластового давления и температуры газ в газовой шапке может быть сухим, жирным или конденсатным. С увеличением глубины залегания число месторождений с газоконденсатной шапкой увеличивается. С повышением давления при постоянной температуре газовая фаза обогащается компонентами нефти, плотность и молекулярная масса конденсата возрастают. С ростом температуры при постоянном давлении увеличивается содержание конденсата в газовой фазе. При одинаковых условиях в газовой фазе больше растворяется легких нефтей.

Растворимость газа в нефти зависит от его состава и природы, возрастая в последовательности метан – этан – этилен – пропан. Критические параметры нефтегазовых смесей значительно выше, чем газоконденсатных. На величину критических параметров влияет порода пласта в связи с адсорбцией асфальто-смолистых компонентов поверхностью твердой породы, что способствует обогащению жидкой фазы легкими фракциями. Остаточная вода способствует увеличению критического давления.

Для прогнозирования фазовых превращений углеводородов при эксплуатации месторождения используют приближенные методы расчета по закону Дальтона–Рауля:

, (7.1)

где: Р – давление смеси;

Хi Уi – молярные концентрации компонентов в паровой и жидкой фазах;

Qi – давление насыщенных паров компонентов смеси в чистом виде.

Константой фазового равновесия (коэффициентом распределения i-го компонента в паровую и жидкую фазы Кi) называется отношение молярной доли i-го компонента в паровой фазе Уi к молярной доли его в жидкой фазе Хi:

, (7.2)

Константу равновесия определяют экспериментальным и расчетным путем. Экспериментально определить константы равновесия достаточно сложно. Расчетный метод состоит в применении уравнений состояния реальных газов, как отношение летучести компонента в паровой фазе к его летучести в жидкой фазе:

, (7.3)

Каждый компонент имеет два значения давления, при которых константы равновесия равны единице, при давлении насыщенных паров компонентов Q, равном общему давлению смеси Р(Q = Р), и в точке схождения давления (рис.7.4).

Рис.7.4. Константы равновесия при Т = 93,3 оС для нефтей с низкой усадкой

Кажущееся давление схождения всех компонентов составляет 34,5–35 МПа. Давление схождения зависит от температуры смеси. Если температура будет критической, то и давление схождения критическое. При эксплуатации месторождения состав смеси непрерывно меняется, поэтому константы фазового равновесия также меняются и их рассчитывают по уравнениям.