Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizikabilety.docx
Скачиваний:
65
Добавлен:
20.03.2016
Размер:
1.77 Mб
Скачать

1 Сила трения

Из опыта известно, что любое тело, движущееся по горизонтальной поверхности другого тела, при отсутствии действия на него других сил с течением времени замедляет свое движение и в конце концов останавливается. Это можно объяснить существованием силы трения, мешающей скольжению соприкасающихся тел друг относительно друга. Силы трения зависят от относительных скоростей соприкасающих тел тел. Силы трения могут иметь разную природу, но в результате их действия механическая энергия соприкасающихся тел всегда превращается во внутреннюю энергию этих тел.  Различают внешнее (сухое) и внутреннее (вязкое или жидкое) трение. Внешним трением называется трение, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении. Если соприкасающиеся тела неподвижны друг относительно друга, говорят о трении покоя, если существует относительное перемещение этих тел, то в зависимости от характера их относительного движения говорят о трении скольжения, качения или верченияВнутренним трением называется трение между внутренними частями одного и того же тела, например между соседними слоями жидкости или газа. В отличие от внешнего трения здесь отсутствует трение покоя. При скольжении тел относительно друг друга в прослойке вязкой жидкости (смазки) трение происходит в слое смазки. В этом случае говорят о гидродинамическом трении (слой смазки достаточно толстый) и граничном трении (толщина смазочной прослойки 0,1 мкм и меньше).  Рассмотрим некоторые закономерности внешнего трения. Это трение обусловлено шероховатостью соприкасающихся поверхностей; в случае же очень гладких поверхностей трение обусловлено силами межмолекулярного притяжения.  Рассмотрим лежащее на горизонтальной плоскости тело (рис. 1), к которому приложена горизонтальная сила F. Тело начнет двигаться лишь тогда, когда приложенная сила F будет больше силы трения Fтр. Опытным путем установлен следующий закон: сила трения скольжения Fтр прямо пропорциональна силе N нормального давления, с которой одно тело действует на другое:  где f - коэффициент трения скольжения, который зависит от свойств соприкасающихся поверхностей.  Найдем значение коэффициента трения. Если тело расположено на наклонной плоскости с углом наклона α (рис.2), то оно приходит в движение, только когда тангенциальная составляющая F силы тяжести Р больше силы трения Fтр. Следовательно, в предельном случае (т.е. при начале скольжения тела) F=Fтр. или Psinα = fN = fPcosα, откуда 

Рис.1

Значит, коэффициент трения равен тангенсу угла, при котором тело начинает скользить по наклонной плоскости.  Для гладких поверхностей определенную роль начинает играть межмолекулярное притяжение. Для них применяется закон трения скольжения  ,  где р0 - добавочное давление, вызванное силами межмолекулярного взаимодействия, быстро уменьшающиеся с увеличением расстояния между частицами; S - площадь контакта между телами; fист - истинный коэффициент трения скольжения.  Трение играет огромную роль в нашей жизни. Благодаря трению движется транспорт, удерживается забитый в стену гвоздь и т. д.  Во многих случаях силы трения оказывают вредное действие и их действие надо уменьшать. Для этого на трущиеся поверхности наносят смазку, уменьшающая силу трения примерно в 10 раз, которая заполняет неровности между данными поверхностями таким образом, что смазка ствновится тонким слоем между ними, причем сами поверхности как бы перестают касаться друг друга, а скользят друг относительно друга отдельные слои жидкости. Значит, внешнее трение твердых тел заменяется значительно меньшим внутренним трением жидкости.  Радикальным способом уменьшения силы трения является замена трения скольжения трением качения (шариковые и роликовые подшипники и т. д.). Сила трения качения определяется по закону, впервые установленным Кулоном:  , (1)  где r - радиус катящегося тела; fк - коэффициент трения качения.

2 изопроцессы

Билет 24.

1 Работа консервативной силы. Потенциальная энергия. Связь потенциальной энергии и консервативной силы. Потенциальные кривые

 

Консервативные и неконсервативные силы

Консервативными силами называются силы, работа которых не зависит от пути перехода тела или системы из начального положения в конечное.

 Характерное свойство таких сил – работа на замкнутой траектории равна нулю:

 

К консервативным силам относятся: сила тяжести, гравитационная сила, сила упругости и другие силы.

Неконсервативными силами называются силы, работа которых зависит от пути перехода тела или системы из начального положения в конечное.

Работа этих сил на замкнутой траектории отлична от нуля. К неконсервативным силам относятся: сила трения, сила тяги и другие силы.

                    Потенциальная энергия.

 

Потенциальная энергия системы – это функция механического состояния системы, зависящая от взаимного расположения всех тел системы и от их положения во внешнем потенциальном поле сил.

Убыль потенциальной энергии равна работе, которую совершают все консервативные силы (внутренние и внешние) при переходе системы из начального положения в конечное.

ЕП1 - ЕП2 = ЕП = А12конс,.

 

Из определения потенциальной энергии следует, что она может быть определена по консервативной силе, причём с точностью до произвольной постоянной, значение которой определяется выбором нулевого уровня потенциальной энергии.

 

.

Таким образом, потенциальная энергия системы в данном состоянии равна работе, совершаемой консервативной силой при переводе системы из данного состояния на нулевой уровень.

Свойства потенциальной энергии.

1. Потенциальная энергия является конечной, однозначной, непрерывной

функцией механического состояния системы.

2. Численное значение потенциальной энергии зависит от выбора уровня с нулевой потенциальной энергией.

Как потенциальная энергия может быть найдена по известной консервативной силе, так и консервативная сила может быть найдена по потенциальной энергии:

 

,

 

причем

,.

Примеры потенциальной энергии:

1) – потенциальная энергия тела массой m, поднятого на высоту h относительно нулевого уровня энергии в поле силы тяжести;

 

2)                   – потенциальная энергия упругого деформированного тела, х – деформация тела.

2 ) Адиабатическим называется процесс, при котором отсутствует теплообмен (δQ=0) между системой и окружающей средой. Адиабатическим процессами можно считать все быстропротекающие процессы. Таковым, например, можно считать процесс распространения звука в среде, так как скорость распространения звуковой волны настолько большая по значению, что обмен энергией между средой и волной произойти не успевает. Адиабатические процессы происходят в двигателях внутреннего сгорания (сжатие и расширение горючей смеси в цилиндрах), в холодильных установках и т. д.  Из первого начала термодинамики (δQ=dU+δA) для адиабатического процесса следует, что  (1)  т. е. внешняя работа совершается за счет изменения внутренней энергии системы.  Используя формулы δA=pdV и CV=dUm/dT, для произвольной массы газа перепишем уравнение (1) в виде  (2)  применив дифференцирование уравнение состояния для идеального газа pV=(m/M)RT получим(3)  Исключим из (2) и (3) температуру Т.Разделив переменные и учитывая, что СpV=γ , найдем  Проинтегрируя это уравнение в пределах от p1 до p2 и соответственно от V1 до V2, и потенцируя, придем к выражению  илиТак как состояния 1 и 2 выбраны произвольно, то можно записать(4)  Полученное выражение естьуравнение адиабатического процесса, называемое также уравнением Пуассона.  Для перехода к переменным Т, V или p, Т исключим из (55.4) с помощью уравнения Менделеева-Клапейрона  соответственно давление или объем:(5)(6)  Выражения (4) — (6) представляют собой уравнения адиабатического процесса. В них безразмерная величина(7)  называетсяпоказателем адиабаты (или коэффициентом Пуассона). Для одноатомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию идеальности, i=3, γ=1,67. Для двухатомных газов (Н2, N2, О2 и др.) i=5, γ=1,4. Значения γ, вычисленные по формуле (55.7), хорошо подтверждаются экспериментом.  Диаграмма адиабатического процесса (адиабата) в координатах р, V есть гипербола (рис. 1). На рисунке видно, что адиабата (pVγ = const) более крута, чем изотерма (pV = const) по причине, что при адиабатическом сжатии 1—3 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры. 

Вычислим работу, которую совершает газ в адиабатическом процессе. Запишем уравнение (1) в виде  Если газ адиабатически расширяется от объема V1 до V2, то его температура уменьшается от T1 до T2 и работа расширения идеального газа  (8)  Используя те же приемы, что и при выводе формулы (5), выражение (8) для работы при адиабатическом расширении можно привести к видугде p1V1=(m/M)RT1  Работа, которую совершает газом при адиабатическом расширении 1—2 (определяется площадью, заштрихованной на рис. 2), меньше, чем при изотермическом, по причине, что при адиабатическом расширении осуществляется охлаждение газа, тогда как при изотермическом — температура поддерживается постоянной за счет притока извне такого же количества теплоты.  Рассмотренные изобарный, изохорный, изотермический и адиабатический процессы имеют общую особенность — они происходят при постоянной теплоемкости. В первых двух процессах теплоемкости соответственно равны СV и Сp, в изотермическом процессе (dT=0) теплоемкость равна ±∞, в адиабатическом (δQ=0) теплоемкость равна нулю. Процесс, в котором теплоемкость остается неизменной, называется политропным.  Исходя из первого начала термодинамики при условии постоянства теплоемкости (C=const) можно вывести уравнение политропы:  (9)  где n=(С—Сp)/(С—СV)—показатель политропы. Очевидно, что при С=0, n=γ, из (55.9) получается уравнение адиабаты; при С = 0, n = 1 — уравнение изотермы; при С=Сp, n=0 —уравнение изобары, при С=СV, n=±∞ — уравнение изохоры. Таким образом, все рассмотренные процессы являются частными случаями политропного процесса.

Билет 25

1 Волны - изменения состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию. Наиболее важные и часто встречающиеся виды волн - упругие волны, волны на поверхности жидкости и электромагнитные волны. Частными случаями упругих волн являются звуковые и сейсмические волны, а электромагнитных - радиоволны, свет, рентгеновские и другие излучения.  Скорость распространения волны нельзя связывать со скоростью движения материальных частиц среды, в которой распространяется волна. Скорость волны представляет собой скорость распространения в пространстве определённой фазы колебаний. Поэтому скорость волны принято называть фазовой скоростью. Скорость волны определяется главным образом упругими свойствами среды, в которой она распространяется. От упругих свойств среды зависит и вид волны. Наиболее распространёнными являются предельные и поперечные волны.  ^ Поперечная волна - волна, направление распространения которой ортогонально траекториям колеблющихся точек среды. Поперечные волны возникают в средах, в которых при сдвиге какого-либо слоя возникают упругие силы (по закону Гука). Такими свойствами обладают в основном твёрдые тела. ^ Продольная волна - волна, направление распространения которой коллинеарно траекториям колеблющихся точек среды. Продольные волны наблюдаются в тех средах, где возникают упругие силы при сжатии или растяжении: это жидкости или газы. Продольные волны могут возникать и в твёрдых телах . Длина волны – λ, период – Т, частота – ν. Основное свойство всех волн независимо от их природы состоит в том, что в волах осуществляется перенос энергии без переноса вещества. Перенос вещества может иметь место как побочное явление Бегущая волна (волна) - распространение возмущения в среде с некоторой определённой скоростью. Величину, служащую мерой состояния среды (перемещение, напряжение, деформацию и т.д.) в случае постоянной скорости волны можно представить в виде функции где q – пространственная координата, вдоль которой происходит распространение волны, t – время, c – постоянная скорость распространения волны.

 Плоская волна - волна, фронт которой представляет собой плоскость, перпендикулярную направлению распространения волны.

 Волновое уравнение. Уравнение любой волны является решением дифференциального уравнения,  которое называется:  или  где - оператор Лапласа.  Для гармонических волн справедливо  Отсюда: - фазовая скорость. Фазовая скорость - скорость распространения поверхности равной фазы для монохроматического излучения. Монохроматическим называется излучение, которое с достаточным приближением может быть охарактеризовано одним значением частоты (длины волны, волнового числа). Введём величину волновое число, которое является модулем волнового вектора. Волновой вектор - вектор, направление которого совпадает с направлением распространения бегущей волны. В изотропных средах вдоль волнового вектора направлены групповая скорость и плотность потока энергии. Групповая скорость - скорость распространения характерной точки на огибающей группы волн, близких по частоте. Физический смысл - групповая скорость совпадает со скоростью переноса энергии излучения группой волн.  ;   Здесь: λ – длинна волны, – фазовая скорость, которая зависит от частоты.

2 уравнение менделеева-клапейрона

Билет 27.

1  

Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.

Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими.

Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения

 

где r - коэффициент сопротивления среды. Знак минус показывает, что FC направлена в сторону противоположную скорости.

Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r. По второму закону Ньютона

где β - коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.

- дифференциальное уравнение затухающих колебаний.

 

- уравнение затухающих колебаний.

ω – частота затухающих колебаний:

Период затухающих колебаний:

Затухающие колебания при строгом рассмотрении не являются периодическими. Поэтому о периоде затухаюших колебаний можно гово­рить, когда β мало.

Если затухания выражены слабо (β→0), то . Затухающие колебания можно

рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону

В уравнении (1) А0 и φ0 - произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания

Рассмотрим колебание в течение, некоторого времени  τ, за которое амплитуда уменьшится в е раз

τ - время релаксации.

Коэффициент затихания β обратно пропорционален времени, в течение которого амплитуда уменьшается в е раз. Однако коэффициента затухания недостаточна для характеристики затуханий колебаний. Поэтому необходимо ввести такую характеристику для затухания колебаний, в которую входит время одного колебаний. Такой характеристикой является декремент (по-русски: уменьшение) затуханияD, который равен отношению амплитуд, отстоящих по времени на период:       

2 Известно, что подвод теплоты к рабочему телу или отвод теплоты от него в каком-либо процессе приводит к изменению его температуры. Отношение количества тепло­ты, подведенной (или отведенной) в данном процессе, к изменению температуры называется теплоемкостью тела (системы тел):

,

(2.1)



где — элементарное количество теплоты;— элементарное изменение температуры.

Теплоемкость численно равна количеству теплоты, которое необходимо подвести к системе, чтобы при заданных условиях повысить ее температуру на 1 градус. Так как единицей количества теплоты в СИ является джоуль, а температуры — градус К, то единицей теплоемкости будет Дж/К.

В зависимости от внешних условий и характера термодинамического процесса теплота может либо подводиться к рабочему телу, либо отводиться от него. Учитывая, что система участвует в бесчисленном множестве процессов, сопровождающихся теплообменом, величинадля одного и того же тела может иметь различные значения. В общем случае значение теплоёмкостилежит в интервале от -∞ до +∞, то есть она может быть любой положительной или отрицательной величиной.

Поэтому обычно в выражении (2.1) при теплоёмкости указывается индекс "x", который характеризует вид процесса теплообмена

.

(2.2)



Индекс "x" означает, что процесс подвода (или отвода) теплоты идет при постоянном значении какого-либо из параметров, например, давления , объемаили других.

Ввиду того, что в термодинамике обычно рассматриваются квазистатические процессы теплообмена, теплоемкость является величиной, относящейся к системе, которая находится в состоянии термодинамического равновесия. Таким образом, теплоемкости являются функциями параметров термодинамической системы. Для простых систем — это функции каких-либо двух из трех параметров:,,.

Опыты показывают, что количество теплоты, подведенное к рабочему телу системы или отведенное от него, всегда пропорционально количеству рабочего тела. Для возможности сравне­ния вводят, как известно, удельные величины теплоемкости, относя подведенную (или отведенную) теплоту количественно к единице рабочего тела.

В зависимости от количественной единицы тела, к которому подводится теплота в термодинамике, различают массовую, объемную и мольную теплоемкости.

Массовая теплоемкость — это теплоемкость, отнесенная к единице массы рабочего тела,

.

Единицей измерения массовой теплоемкости является Дж/(кг • К). Массовую теплоемкость называют также удельной теплоемкостью.

Объемная теплоемкость — теплоемкость, отнесенная к единице объема рабочего тела,

,

где и— объем и плотность тела при нормальных физических условиях.

Объемная теплоемкость измеряется в Дж/(м3 • К).

Мольная теплоемкость — теплоемкость, отнесенная к количеству рабочего тела (газа) в молях,

,

(2.3)



где — количество газа в молях.

Мольную теплоемкость измеряют в Дж/(моль • К).

Массовая и мольная теплоемкости связаны следующим соотношением:

или

,

(2.4)



где - молекулярная масса.

Объемная теплоемкость газов выражается через мольную как

или

,

(2.5)



где м3/моль — мольный объем газа при нормальных условиях.

Билет 28.

1 Уравнение любой волны является решением дифференциального уравнения,  которое называется:  или  где - оператор Лапласа. 

Продольная волна - волна, направление распространения которой коллинеарно траекториям колеблющихся точек среды. Продольные волны наблюдаются в тех средах, где возникают упругие силы при сжатии или растяжении: это жидкости или газы. Продольные волны могут возникать и в твёрдых телах . Длина волны – λ, период – Т, частота – ν. Основное свойство всех волн независимо от их природы состоит в том, что в волах осуществляется перенос энергии без переноса вещества. Перенос вещества может иметь место как побочное явление Бегущая волна (волна) - распространение возмущения в среде с некоторой определённой скоростью. Величину, служащую мерой состояния среды (перемещение, напряжение, деформацию и т.д.) в случае постоянной скорости волны можно представить в виде функции где q – пространственная координата, вдоль которой происходит распространение волны, t – время, c – постоянная скорость распространения волны.

 Плоская волна - волна, фронт которой представляет собой плоскость, перпендикулярную направлению распространения волны.

2 уравнение менделеева клапейрона

Билет 29

1 Гармоническим осциллятором называется система, которая совершает колебания, описываемые выражением вида d2s/dt2 + ω02s = 0 или  (1)  где две точки сверху означают двукратное дифференцирование по времени. Колебания гармонического осциллятора есть важный пример периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. В качестве примеров гармонического осциллятора могут быть пружинный, физический и математический маятники, колебательный контур (для токов и напряжений настолько малых, что можно было бы элементы контура считать линейными).  1. Пружинный маятник — это груз массой m, который подвешен на абсолютно упругой пружине и совершает гармонические колебания под действием упругой силы F = –kx, где k — жесткость пружины. Уравнение движения маятника имеет вид    или    Из формулы (1) вытекает, что пружинный маятник совершает гармонические колебания по закону х = Асоs(ω0t+φ) с циклической частотой   (2)  и периодом   (3)  Формула (3) верна для упругих колебаний в границах, в которых выполняется закон Гука, т. е. если масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, используя (2) и формулу потенциальной энергии предыдущего раздела, равна   

2

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]