Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizikabilety.docx
Скачиваний:
65
Добавлен:
20.03.2016
Размер:
1.77 Mб
Скачать

Поступательное движение Вращательное движение

Скорость  Угловая скорость  Ускорение Угловое ускорение 

2 Одной из основных характеристик термодинамической системы является ее внутренняя энергия U — энергия хаотического (теплового) движения микрочастиц системы (атомов, молекул, ядер, электронов и т. д.) и энергия взаимодействия этих частиц. Из этого определения следует, что к внутренней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.  Внутренняя энергия — определенная функция термодинамического состояния системы, т. е. в любом состоянии система обладает вполне определенной внутренней энергией (она не зависит от того, каким образом система пришла в данное состояние). Это значит, что при переходе системы из одного состояния в другое изменение внутренней энергии задается только разностью значений внутренней энергии данных состояний и не зависит от пути и способа перехода.  В механике введилось понятие числа степеней свободы: это число независимых переменных (координат), которые полностью определяют положение системы в пространстве. В некоторых задачах молекулу одноатомного газа (рис. 1, а) рассматривают как материальную точку, которой задают три степени свободы поступательного движения. При этом не учитывается энергия вращательного движения.  В механике молекула двухатомного газа в первом приближении считается совокупностью двух материальных точек, которые жестко связанны недеформируемой связью (рис. 1, б). Данная система кроме трех степеней свободы поступательного движения имеет еще две степени свободы вращательного движения. Вращение вокруг третьей оси, проходящей через оба атома, лишено смысла. Значит, у двухатомного газа пять степеней свободы (i = 5). У трехатомной (рис. 1, в) и многоатомной нелинейной молекулы шесть степеней свободы: три поступательных и три вращательных. Естественно считать, что жесткой связи между атомами не существует. Поэтому необходимо учитывать для реальных молекул также степени свободы колебательного движения. 

Рис.1

При любом числе степеней свободы данной молекулы три степени свободы всегда поступательные. Ни одна из поступательных степеней свободы не имеет преимущества перед другими, значит на каждую из них приходится в среднем одинаковая энергия, равная 1/3 значения <ε0> (энергия поступательного движения молекул):  В статистической физике выводится закон Больцмана о равномерном распределении энергии по степеням свободы молекул: для статистической системы, которая находится в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная kT/2, а на каждую колебательную степень свободы — в среднем энергия, равная kT. Колебательная степень обладает вдвое большей энергией, т.к. на нее приходится как кинетическая энергия (как в случае поступательного и вращательного движений), так и потенциальная, причем средние значения потенциальной и кинетической и энергии одинаковы. Значит, средняя энергия молекулы  где i — сумма числа поступательных, числа вращательных в удвоенного числа колеба¬тельных степеней свободы молекулы:i=iпост+iвращ+2iколеб  В классической теории рассматривают молекулы с жесткой связью между атомами; для них i совпадает с числом степеней свободы молекулы.  Так как в идеальном газе взаимная потенциальная энергия взаимодействия молекул равна нулю (молекулы между собой не взаимодействуют), то внутренняя энергия для одного моля газа, будет равна сумме кинетических энергий NA молекул:  (1)  Внутренняя энергия для произвольной массы m газа.  где М — молярная масса, ν — количество вещества. 

Билет 14.

1 Гироскопом (или волчком) называют массивное симметричное тело, вращающееся с большой скоростью вокруг оси симметрии (рис.5.5).

Момент количества движения гироскопа совпадает с его осью вращения. Для того, чтобы изменитьнаправление в пространстве оси гироскопа, т.е. направление вектора необходимо в соответствие основным уравнением динамики вращательного движения подействовать на него моментом внешних сил . Пусть это пара сил создающая вращающий момент относительно оси , лежащей в плоскости чертежа перпендикулярно оси ОО (вращение вокруг ). При этом наблюдается следующее явление, получившее название гироскопического эффекта: под действием пары сил, которые, казалось бы, должны были вызвать поворот оси гироскопа ОО вокруг оси , ось гироскопа поворачивается вокруг прямой перпендикулярно к этим осям (т.е. к ОО и ). «Противоестественное» на первый взгляд поведение гироскопа оказывается, как легко видеть, полностью соответствует законам динамики вращательного движения, т.е. в конечном счете, законам Ньютона. Рассмотрим поведение гироскопа под действием момента силы действующего вдоль оси . За время момент количества движения гироскопа получит приращение , которое имеет такое же направление, как и . Момент количества движения гироскопа спустя время будет равен результирующей , лежащей в плоскости чертежа. Направление вектора совпадает с новым направлением оси вращения гироскопа. Таким образом, ось гироскопа повернется вокруг оси (перпендикулярной плоскости чертежа), причем так, что угол между векторами и уменьшится: Если действовать на гироскоп длительное время постоянным по направлению моментом внешних сил, то ось гироскопа устанавливается в конце концов так, что ось и направление собственного вращения совпадают с осью и направлением вращения под действием внешних сил (вектор , совпадает по направлению с вектором )

2 Дифференциальное уравнение вынужденных колебаний и его решение

Где – максимальное значение вынужденной силы,– циклическая частота колебаний вынуждающей силы.

 – дифференциальное уравнение вынужденных колебаний.

Это уравнение делим на m

Обозначим ;;.

Если внешняя сила не действует, т.е. , то– уравнение свободных колебаний.

r – коэффициент сопротивления среды.

 - сила сопротивления

 - коэффициент характеристики сопротивления среды

Если сопротивление отсутствует, т.е. , то- уравнение собственных колебаний системы.

- частота собственных колебаний системы.

Неоднородные колебания

Будем искать решение в виде: .

Решение:

Если , то частота собственных колебаний равна частоте вынужденных колебаний.

Т.е. - это максимальное значение амплитуда – амплитуда резонанса колебаний.

Если , т.е. трение внешнее мало или отсутствует, то амплитуда стремится к бесконечности.

Резонанс – это явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к частоте, равной или близкой частоте собственных колебаний системы.

Билет 15

1 В 1687 г. Ньютон установил один из фундаментальных законов механики, получивший название закона всемирного тяготениялюбые две материальные частицы притягиваются друг к другу с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Эту силу называют силой тяготения (или гравитационной силой).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]