Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

биохимия шпоры

.docx
Скачиваний:
179
Добавлен:
20.03.2016
Размер:
41.3 Кб
Скачать

1)Биохимия, ее задачи. Значение биохимии для медицины. БХ—наука о структуре веществ, входящих в состав живого организма, их превращениях и физико-химических процессах, лежащих в основе жизнедеятельности. Задачи БХ 1.Изучение процессов БИОКАТАЛИЗА.2.Изучение механизмов наследственности на молекулярном уровне.3.Изучение строения и обмена нуклеиновых кислот.4.Изучение строения и обмена белков, жиров5.Изучение превращения углеводов.7.Изучение биологической роли сигнальных молекул (ГОРМОН).8.Изучение роли витаминов в обмене веществ.9.Изучение роли минеральных веществ.Значение БХ для медицины.Основные задачи медицины: патогенез, диагностика, лечение, профилактика заболеваний.1.Значение БХ для понимания механизма заболевания.ПР. Сердечно-сосудистые заболевания (атеросклероз). В настоящее время предполагают, что важным является чувствительность рецепторов клеток к ЛПНП 2.Значение БХ для диагностики заболеваний.Широкое использование биохимических исследований биологических жидкостей.A. Количество субстратов.Б. Исследование активности ферментов.B. Исследование уровня гормонов. Методы РИА, ИФА. Выявление ПРЕДЗАБОЛЕВАНИЙ.3. Значение БХ для лечения. Выявление нарушенных звеньев метаболизма, создание соответствующих лекарственных препаратов, широкое использование природных препаратов.4.Значение БХ для профилактики заболеваний. ПР. Недостаток вит. С —цинга—для профилактики вит. С. Недостаток вит. D— рахит—вит. D

2)Аминокислоты, классификация. Уровни структурной организации белков. Характеристика связей, стабилизирующих их. Доменные белки. Белки состоят из АК. Все АК можно разделить на 4 группы:1 .Заменимые - синтезируются в организме: АЛА, АСП, АСН, ГЛУ, ГЛН, ГЛИ, ПРО, СЕР. 2.Незаменимые - не синтезируются в организме и поступают с пищей: ВАЛ, ЛЕЙ, ИЛЕ. ЛИЗ. ТРЕ, МЕТ, ФЕН, ТРИ.3.Частично заменимые - синтезируются в организме, но очень медленно и не покрывают всех потребностей организма: ГИС, АРГ.4.Условно заменимые - синтезируются из незаменимых аминокислот: ЦИС (МЕТ), ТИР (ФЕН). Полноценность белкового питания определяется:1. Наличием всех незаменимых аминокислот. Отсутствие даже одной незаменимой аминокислоты нарушает биосинтез белка.2. Аминокислотным составом белка. Все АК могут содержаться в продуктах как животного, так и растительного происхождения.1. Белки - АЗОТСОДЕРЖАЩИЕ вещества (до 16 %).2. Структурной единицей белков являются альфа АК L-РЯДА. З.АК связываются ПЕПТИДНЫМИ связями в ПОЛИПЕПТИДНУЮ цепь,4. Большая молекулярная масса белков (от 20000 до нескольких миллионов дальтон).5. Сложная структурная организация.ПЕРВИЧНАЯ СТРУКТУРА - последовательное соединение АК в ПОЛИПЕПТИДНОЙ цепи с помощью ПЕПТИДНЫХ связей. Свойства ПОЛИПЕПТИДНОЙ цепи зависят от составляющих её АК. ВТОРИЧНАЯ СТРУКТУРА - способ укладки в пространстве ПОЛИПЕПТИДНОЙ цепи. Образуется за счет водородных связей между 1 и 4 АК.Выделяют 3 вида вторичной структуры:1 .Альфа спираль ( Л.ПОЛЛИНГ) - виток составляет от 3 до 6 АК. Терминатором спирали является АК-ПРОЛИН.2.Бетта складчатый слой.3.Петли ПОЛИПЕПТИДНОЙ цепи (соединительные петли).ТРЕТИЧНАЯ СТРУКТУРА - укладка вторичной структуры более компактно, в виде ГЛОБУЛЫ или ФИБРИЛЛЫ. Осуществляется за счёт водородных, ионных, ДИСУЛЬФИДНЫХ и гидрофобных связей. Домены - это фрагменты ПОЛИПЕПТИДНОЙ цепи, сходные по свойствам с самостоятельными глобулярными белками. Домен автономен. Домены возникают в результате слияния нескольких генов отдельных белков. ЧЕТВЕРТИЧНАЯ СТРУКТУРА - объединение неск. доменов. П. Гемоглобин-4 субъединицы. Доменные белки содержат обособленные глобулы - домены, образованные одной и той же пептидной цепью. Домены соединены пептидными перемычками. Вторичная и третичная укладка полипептидной цепи белка полностью определяется его первичной структурой.

3) Физико-химические свойства белков как основа методов их исследования. 1.Молекулярная масса белков определяет многие свойства белков: седиментация, диффузия, плотность белковых растворов, коллоидные свойства белков и др. характеристики. Молекулярную массу белка можно определить по скорости седиментации (осаждения) при УЛЬТРАЦЕНТРИФУГИРОВАНИИ. На основании этого определяют коэффициент седиментации. Др. методом определения молекулярной массы является метод ГЕЛЬФИЛЬТРАЦИИ (молекулярное просеивание). 2.Способность белков связываться с ЛИГАНДАМИ. Белки способны связываться с определенными веществами. Белки специфично узнают свои ЛИГАНДЫ. ИЗБИРАТЕЛЬНОСТЬ обеспечивается белковой частью гемоглобина. Центр связывания ЛИГАНДА называется активным центром. Это свойство лежит в основе АФФИНой ХРОМОТОГРАФИи. 3.Электрохимические свойства белков. А. АМФОТЕРНОСТЬ. Белки - АМФОТЕРНЫЕ ЭЛЕКТРОЛИТЫ.Б. Буферные свойства - способность поддерживать РН среды. Наиболее мощным буфером крови является ГЕМОГЛОБИНОВЫЙ буфер, т.к. в большом количестве содержит ГИСТИДИН.B. Белки содержат заряд, который зависит от соотношения кислотных и основных групп, а оно в свою очередь зависит от их диссоциации, определяющейся РН среды.Изоэлектрическое состояние - это состояние молекулы белка, при котором её заряд равен 0. В изоэлектрическом состоянии белок менее устойчив. Это свойство белков используется при их ФРАКЦИВАНИИ: 1.ИОНООБМЕННАЯ ХРОМАТОГРАФИЯ.Для неё используется ИОНООБМЕННИКИ, которые изготавливаются из чистой целлюлозы: ДЭАЭ - целлюлоза (содержит катионные группы); КМ - целлюлоза (содержит анионные группы). 2.Разделение белков на основании величины заряда - электрофорез белков. С помощью электрофореза в сыворотке крови выделяют как минимум 5 фракций: АЛЬБУМИНЫ, альфа, альфа-2, гамма, бета - глобулины.

4) Принципы классификации белков. Характеристика простых белков. 1 .По функции выделяют:1. Транспортные белки (гемоглобин  О2, альбумин жирные кислоты).2. Каталитические (ферменты),3. Регуляторные (гормоны).4. Структурные (белки соединительной ткани, мембранные белки).5. Защитные (антитела).6. Сократительные (актин, миозин).7. Рецепторные участвуют в образовании рецепторов.2. По форме выделяют:1. Глобулярные.2.Фибриллярные белки.Просты́е белки́ — белки, которые построены из остатков α-аминокислот и при гидролизе распадаются только на аминокислоты.Простые белки по растворимости в воде и солевых растворах условно подразделяются на: протамины, гистоны, альбумины, глобулины, проламины, глютелины.Простые белки по растворимости и пространственному строению разделяют на глобулярные и фибриллярные. Глобулярные белки отличаются шарообразной формой молекулы, растворимы в воде. К этой группе относятся все ферменты и БАВ.Среди глобулярных белков можно выделить:•альбумины — растворимы в воде в широком интервале рН ( 4 -8,5), осаждаются 70-100% раствором сульфата аммония;•полифункциональные глобулины с большей молекулярной массой, труднее растворимы в воде, растворимы в солевых растворах, часто содержат углеводную часть;• гистоны — низкомолекулярные белки с высоким содержанием в молекуле остатков аргинина и лизина, что обусловливает их основные свойства;• протамины отличаются еще более высоким содержанием аргинина (до 85 %), как и гистоны, образуют устойчивые ассоциаты с нуклеиновыми кислотами, выступают как регуляторные и репрессорные белки — составная часть нуклеопротеинов;• проламины характеризуются высоким содержанием глутаминовой кислоты (30-45 %) и пролина (до 15 %), нерастворимы в воде, растворяются в 50-90 % этаноле;•глутелины содержат около 45 % глутаминовой кислоты, как и проламины, чаще содержатся в белках злаков.Фибриллярные белки характеризуются волокнистой структурой, практически нерастворимы в воде и солевых растворах. Полипептидные цепи в молекулах расположены параллельно одна другой. Участвуют в образовании структурных элементов соединительной ткани (коллагены, кератины, эластины).

5) Нуклеопротеины, виды. Хроматин - комплекс ДНК с белками. Нуклеи́новая кисло́та — высокомолекулярное органическое соединение, биополимер, образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.Генетическая догма: информация записана в ДНК и передаётся на дочерние молекулы ДНК из поколения в поколение с помощью процесса репликации. ДНК  РНК  белок РЕПЛИКАЦИЯ - процесс самоудвоения ДНК.Строение.Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты(фосфодиэфирная связь). Поскольку в нуклеотидах существует только рибоза и дезоксирибоза, то и имеется лишь дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).Мономерные формы также встречаются в клетках и играют важную роль в процессах передачи сигналов или запасании энергии. Наиболее известный мономер РНК — АТФ, важнейший аккумулятор энергии в клетке.-ДНК. Сахар — дезоксирибоза, азотистые основания: пуриновые — гуанин (G), аденин (A),пиримидиновые — тимин (T) и цитозин (C). ДНК состоит из двух полинуклеотидных цепей, направленных антипараллельно.-РНК. Сахар — рибоза, азотистые основания: пуриновые — гуанин (G), аденин (A), пиримидиновые урацил (U) и цитозин (C). Структура полинуклеотидной цепочки аналогична таковой в ДНК. Из-за особенностей рибозы молекулы РНК часто имеют различные вторичные и третичные структуры.

6) Хромопротеины. Функции гемоглобина. Типы гемоглобинов. Миоглобин. Хромопротеиды. К ним относится множество белков с металлсодержащей порфириновой простетической группой, выполняющие разнообразные функции — гемопротеины, хлорофиллы.Гемоглобин — это гемопротеин, с молекулярной массой около 60 тыс., окрашивающий эритроцит в красный цвет после связывания молекулы O2 с ионом железа (Fe++). У мужчин в 1 л крови содержится 157 (140—175) г, у женщин — 138 (123—153) г. Молекула гемоглобина состоит из четырех субъединиц гема, связанных с белковой частью молекулы — глобином, сформированной из полипептидных цепей. Главная функция гемоглобина состоит в переносе кислорода. У плода содержится фетальный гемоглобин. Соединение гемоглобина с молекулой 02 называется оксигемоглобином. Оксигемоглобин, отдавший кислород, называется дезоксигемоглобином. Гемоглобин способен связывать в тканях небольшое количество CO2 и освобождать его в лёгких. Монооксид углерода (CO) связывается с гемоглобином крови намного сильнее, чем кислород, образуя карбоксигемоглобин (HbCO). Некоторые процессы приводят к окислению иона железа в геме до степени окисления +3 и образуется метгемоглобин (HbOH). Миоглоби́н — кислород-связывающий белок скелетных мышц и мышцы сердца. Миоглобин отвечает за транспорт кислорода в скелетных мышцах и в мышце сердца. Этот факт используется для определения диагноза инфаркта миокарда по появлению специфического «сердечного» изотипа миоглобина.

7)Углевод-белковые комплексы. Гликопротеины, протеогликаны, их функции в организме. 1)ГАГ – линейные неразветвленные гетерополисахариды, состоящие из повторяющихся дисахаридов. Мономеры дисахаридов: гексуроновая к-та, глюкозамин или галактозамин, сульфаты.Классификация: • Гиалуроновая к-та( пример) •хондроитин-4-сульфат •хондороитин-6-сульфат •дерматансульфат• гепарин•Гепарансульфат 2)Протеогликаны.Это ВМС, состоящие из белка и ГАГ. Они образуют основное вещество межклеточного матрикса. В матриксе представлены крупные и малые протеогликаны. Крупные: агрекан и версикан. Агрекан - основной протеогликан хрящевого матрикса. Белковый компонент агрекана – коровый белок + ГАГ. Функции:•Является структурным компонентом межклеточ. Матрикса• Необходим для взаимодействия с другим белком межклеточного матрикса•Обеспечивает упругость ткани•Препятствует распространению МО• Гепарин - антикоагулянт, гепарансульфат – компонент мембран клеток.Синтез этих соединений состоит из этапов:• Синтез корового белка•Присоединение связующего трисахарида• Синтез ПС цепей•Сульфатирование•Синтез аминосахаров.Катаболизм происходит при обновлении клеток. Коровый белок расщепляется протеиназами. Цепи ГАГ разрушаются эндо и экзогликозидазами. Расщепление необходимых фрагментов до моносахаридов осуществляется лизосомальными гидролазами.

8.Липид-белковые комплексы. Структурные протеолипиды. Липопротеины и их функции. Протеолипиды – это белково-липидные соединения, экстрагируемые органическими растворителями из ткани мозга. Отличаются от водорастворимых липопротеинов тем, что они нерастворимы в воде. Белки, освобожденные от липидов, растворимы в воде. Наибольшее количество протеолипидов сосредоточено в миелине.Транспорт липидов кровью и лимфой осуществляется липопротеинами. Ядро состоит из гидрофобных молекул (триацилглицеролов), наружный слой содержит фосфолипиды, аполипопротеины и холестерол.1)Хиломикроны – крупные, ресинтезируют жиры, фосфолипиды, ХС. Функция – транспорт экзогенных пищевых липидов. Содержат 2% белка и 80 % триацилглицеролов. В крови они подвергаются действию липопротеинлипазы, которая гидролизует ТАГ с образованием глицерола и ВЖК. Остаточные хиломикроны в печени ферментируются лизосомами, в результате освобождаются ХС, ЖК, жирорастворимые витамины2)ЛПОНП – содержит ТАГ, ХС, фосфолипиды. Белка мало, образуются в печени, из нее секрктируются в кровь, где на них действует липопротеинлипаза, в результате чего ЛПОНП превращается в ЛПНП.3)ЛПНП – содержит ХС и его эфиры. Функция – транспорт ХС в ткани4)ЛПВП – содержит белок (50%) и фосфолипиды. Образуются в печени. На поверхности содержится лецитинхолатероацил (ЛХАТ). Они собирают ХС от других липопротеинов. ЛХАТ переводит ХС в его эфиры и перемещает их внутрь ЛПВП. В составе ЛПВП ХС и эфиры поступают в печень, где ХС секретируется с желчью и в виде производных выделяется с фекалиями.

9) Ферменты, их химическая природа, структурная организация, свойства. Сходство и отличия ферментов и небелковых катализаторов. Ферменты - это биологические катализаторы белковой природы. Ферменты начинают своё каталитическое действие в ЖКТ, продолжают его в тканях, на этапе выведения и образования конечных продуктов. Все реакции в организме ферментативные.1. Повышают скорость реакции.2. В реакциях они не расходуются.3. Для обратимых процессов и прямая, и обратная реакция катализируется одним и тем же ферментом. ОТЛИЧИТЕЛЬНЫЕ ПРИЗНАКИ. 1 .Ферменты обладают более высокой эффективностью действия.2.Ферменты чувствительны к температуре (ТЕРМОЛАБИЛЬНЫ) 3.Ферменты чувствительны к значениям РН среды. 4.Ферменты обладают высокой специфичностью действия. 5.Ферменты - это катализаторы с регулируемой активностью. Ферменты, как и все функциональные белки, могут быть простыми и сложными. Простые ферменты представлены только белковой частью (состоят из АК) - ПЕПСИН, ТРИПСИН, ФОСФАТАЗЫ. В структурном отношении имеют 3 уровня организации.Сложные ферменты представлены: 1 .Белковой частью (состоит из АК) - АПОФЕРМЕНТ; 2.Небелковой частью - КОФАКТОР.Выделяют 2 основных КОФАКТОРА: А. Ионы металлов (К, Na, Ca, Mg, Mn) большинство всех ферментов являются МЕТАЛЛОФЕРМЕНТАМИ. В продуктах питания должны обязательно содержаться микроэлементы. В. КОФЕРМЕНТЫ - низкомолекулярные органические вещества не белковой природы. Активный центр - это участок в молекуле фермента, где происходит связывание и превращение субстрата. АКТ. Ц обычно располагается в гидрофобном углублении , изолируя субстрат от воды. В образовании АКТ. Ц, участвуют боковые группы АК (12-20 АК), причём эти АК могут находиться на разных участках ПОЛИПЕПТИДНОЙ цепи, но при формировании пространственной конфигурации фермента они укладываются т.о., что располагаются в области активного центра. В образовании активного центра принимают участие следующие группы: NH2 (АРГ,ЛИЗ), СООН (АСП, ГЛУ), SH (ЦИС), ОН (СЕР,ТРЕ), ИМИДАЗОЛ (ГИС), ГУАНИДИНО-группа.. Контактный участок -это место в активном центре фермента, где происходит связывание субстрата с его активным центром. Контактный участок обеспечивает специфическое сродство субстрата к ферменту. Каталитический участок - место, где проходит сама каталитическая реакция.

10)Коферменты, классификация, функции в ферментативных реакциях. КОФЕРМЕНТЫ - низкомолекулярные органические вещества не белковой природы. Они чаще всего содержат в своём составе различные витамины, следовательно, их делят на две группы: 1.Витаминные. 2.Невитаминные. 1.ТИАМИНОВЫЕ в составе витамин В1 (ТИАМИН) - ТМФ – ТИАМИНМОНОФОСФАТ, ТДФ- ТИАМИНДИФОСФАТ, ТТФ - ТИАМИНТРИФОСФАТ. ТПФ связана с ферментами ДЕКАРБОКСИЛАЗАМИ альфа КЕТОКИСЛОТ (ПВК, альфа КГК)

2.ФЛАВИНОВЫЕ содержат витамин В2 - ФМН – ФЛАВИНМОНОНУКЛЕОТИД, ФАД - ФЛАВИИАДЕНИНДИНУКЛЕОТИД. ФМН и ФАД связанны с ферментами ДЕГИДРОГЕНАЗАМИ. Участвуют в реакциях ДЕГИДРИРОВАНИЯ.

3. ПАНТОТЕИНОВЫЕ (витамин ВЗ) - KOF A (HS-KOA - HS КОЭНЗИМ А) - КОФЕРМЕНТ АЦИЛИРОВАНИЯ.

4. НИКОТИНАМИДНЫЕ содержат витамин РР (НИАЦИН)- НАД (НИКОТИНАМИДАДЕНИНДИНУКЛЕОТИД), НАДФ (НИКОТИНАМИДАДЕНИНДИНУКЛЕОТИДФОСФАТ). Связаны с ДЕГИДРОГЕНАЗАМИ:

5.ПИРИДОКСИНОВЫЕ содержат витамин В6. ПАФ – ПИРИДОКСАМИНОФОСФАТ, ПФ - ПИРИДОКСАЛЬФОСФАТ.:

1.Реакции ПЕРЕАМИНИРОВАНИЯ (ТРАНСАМИНИРОВАНИЕ). Связан с ферментами АМИНОТРАНСФЕРАЗАМИ.

2.РЕАКЦИИ ДЕКАРБОКСИЛИРОВАНИЯ АК.

11.Классификация и номенклатура ферментов. Характеристика класса оксидоредуктаз, примеры ре-акций. 1. ОКСИДОРЕДУКТАЗЫ.2. ТРАНСФЕРАЗЫ.3. ГИДРОЛАЗЫ.4.ЛИАЗЫ.5.ИЗОМЕРАЗЫ.6. ЛИГАЗЫ.Каждый класс делится на подклассы. Подклассы делятся на ПОДПОДКЛАССЫ.

1 .ОКСИДОРЕДУКТАЗЫ.

Ферменты этого класса участвуют в ОВР. Это наиболее многочисленный класс ферментов (более 400 ОКСИДОРЕДУКТАЗ). 1.АЭРОБНЫЕ ДЕГИДРОГЕНАЗЫ. Они участвуют в реакциях ДЕГИДРИРОВАНИЯ.

Некоторые АЭРОБНЫЕ ДЕГИДРОГЕНАЗЫ называют ОКСИДАЗАМИ. Например, ОКСИДАЗЫ АК.

2.АНАЭРОБНЫЕ ДГ. Эти ферменты также участвуют в реакциях ДЕГИДРИРОВАНИЯ, т.е. отнятия Н2 от окисляемого субстрата и транспортировка его на любой др. субстрат, кроме О2.

3.ПЕРОКСИДАЗЫ. Ферменты, которые отнимают Н2 от окисляемого субстрата и транспортируют его на ПЕРОКСИД.

4.ЦИТОХРОМЫ. Они содержат в своем составе ГЕМ. ЦИТОХРОМЫ участвуют в транспорте только электронов.

12.Характеристика трансфераз и гидролаз, примеры реакций. ТРАНСФЕРАЗЫ. Ферменты этого класса участвуют в транспорте атомных групп от донора к ацептору. В зависимости от переносимых групп, ТРАНСФЕРАЗЫ делятся на несколько подклассов:

1.АМИНОТРАНСФЕРАЗЫ. Они участвуют в реакциях ПЕРЕАМИНИРОВАНИЯ.

АСАТ - АСПАРАГИНОВАЯ АМИНОТРАНСФЕРАЗА.

2.МЕТИЛТРАНСФЕРАЗЫ (СНЗ группы).

3.ФОСФОТРАНСФЕРАЗЫ (ФОСФАТНЫЕ группировки).

4.АЦИЛТРАНСФЕРАЗЫ (кислотные остатки).

ГИДРОЛАЗЫ. Ферменты этого класса участвуют в реакциях разрыва связей в молекулах субстратов при участии воды.

1.ЭСТЕР АЗЫ действуют на СЛОЖНО-ЭФИРНЫЕ связи. К ним относятся ЛИПАЗЫ, ФОСФОЛИПАЗЫ, ХОЛЕСТЕРАЗЫ.

2.ГЛИКОЗИДАЗЫ - действует на ГЛИКОЗИДНУЮ связь, находящуюся в сложных углеводах. К ним относятся АМИЛАЗА, САХАРАЗА, МАЛЬТАЗА, ГЛИКОЗИДАЗЫ, ЛАКТАЗА.

3.ПЕПТИДАЗЫ участвуют в разрыве ПЕПТИДНЫХ связей в белках. К ним относятся ПЕПСИН, ХИМОТРИПСИН, АМИНОПЕПТИДАЗА, КАРБОКСИПЕПТИДАЗА и т.д.

13.Характеристика лиаз, изомераз, синтетаз, примеры реакций. Лиазы. 1 .ДЕКАРБОКСИЛАЗЫ участвуют в реакциях ДЕКАРБКСИЛИРОВАНИЯ.

2.Ферменты, разрывающие связи между атомами углеводов не ГИДРОЛИТИЧЕСКИМ путём без участия воды (АЛЬДОЛАЗА).

3.Ферменты, участвующие в реакциях ГИДРАТАЦИИ и ДЕГИДРАТАЦИИ.

ИЗОМЕРАЗЫ. Ферменты этого класса участвуют в ИЗОМЕРИЧЕСКИХ превращениях. При этом один структурный изомер может превращаться в другой, за счёт внутри молекулярной перегруппировки атомов.

ЛИГАЗЫ. Ферменты этого класса участвуют в реакциях соединения двух и более простых веществ с образованием нового вещества. Эти реакции требуют затрат энергии извне в виде АТФ.

14.Современные представления о механизме действия ферментов. Стадии ферментативной реакции, молекулярные эффекты. МЕХАНИЗМ ДЕЙСТВИЯ ФЕРМЕНТОВ. С термодинамической точки зрения, действие любого фермента направлено на понижение энергии активации. Чем ниже энергия активации, тем выше скорость реакции. Теория действия ферментов была предложена БЕЙЛИСОМ и ВАНБУРГОМ. Согласно ей, фермент представляет собой "губку", которая адсорбирует на своей поверхности молекулы реагирующих веществ. Она как бы стабилизирует их, способствует взаимодействию. 70 лет назад была предложена др. теория МИХАЭЛИСОМ и МЕНТЕНОМ. Они выдвинули понятие о F-S комплексе. Фермент взаимодействует с субстратом, образуя нестойкий промежуточный F-S комплекс, который затем распадается с образованием продуктов реакции (Р) и освобождением фермента. В этом процессе выделяют несколько стадий: 1.Диффузия S к F и их СТЕРИЧЕСКОЕ взаимодействие с образованием F-S комплекса. Эта стадия не продолжительна. На этой стадии практически не происходит понижения энергии активации. 2.Преобразование F-S комплекса в один или несколько активированных комплексов. Эта стадия является наиболее продолжительна. При этом происходит разрыв связей в молекуле субстрата, образование новых связей. Е активации  3.Освобождение продуктов реакции от фермента и поступление их в окружающую среду. МОЛЕКУЛЯРНЫЕ ЭФФЕКТЫ ФЕРМЕНТАТИВНОГО ДЕЙСТВИЯ. 1. Эффект концентрации. Поэтому основная роль ферментов заключается в притяжении молекул реагирующих веществ на свою поверхность и концентрация этих молекул в области активного центра фермента. 2. Эффект, сближения и ориентации. Контактные участки активного центра фермента связывают специфически молекулы субстрата, сближают их и обеспечивают ориентацию так, чтобы это было выгодно для действия каталитических групп фермента. 3. Эффект натяжения ("дыбы"). До присоединения субстрата к активному центру фермента его молекула в расслабленном состоянии. После связывания молекула субстрата растягивается и принимает напряжённую деформированную конфигурацию. Понижается Е активации. 4. Кислотно-основной катализ. Группы кислотного типа отщепляют Н+ и имеют отрицательный заряд. Группы основного типа присоединяют Н+ и имеют положительный заряд. Это приводит к понижению энергии активации. 5.Эффект индуцированного соответствия. Он объясняет специфичность действия ферментов. По этому поводу имеется 2 точки зрения: А). Гипотеза ФИШЕРА. Согласно ей имеется строгое СТЕРИЧЕСКОЕ соответствие субстрата и активного центра фермента. В). Теория индуцированного соответствия КОШЛЕНДА. Согласно ей молекула фермента - это гибкая структура. После связывания фермента с субстратом, изменяется КОНФОРМАЦИЯактивного центра фермента и всей молекулы субстрата. Они находятся в состоянии индуцированного соответствия. Это происходит в момент взаимодействия.

15.Ингибирование ферментов. Виды ингибирования, примеры. Лекарственные вещества как ингибиторы ферментов. ИНГИБИТОРЫ. Ферменты - это катализаторы с регулируемой активностью. Ею можно управлять с помощью различных веществ. Действие фермента можно ИНГИБИРОВАТЬ определёнными химическими веществами- ИНГИБИТОРАМИ. По характеру действия ингибиторы делятся на 2 большие группы: 1.Обратимые - это соединения, которые НЕКОВАЛЕНТНО взаимодействуют с ферментом, при этом образуется комплекс, способный к диссоциации. 2.Необратимые - это соединения, которые могут специфически связывать определенные функциональные группы активного центра фермента. Они образуют с ним прочные КОВАЛЕНТНЫЕ связи, поэтому такой комплекс трудно разрушить. ВИДЫ ИНГИБИРОВАНИЯ. По механизму действия выделяют следующие виды ИНГИБИРОВАНИЯ: 1. Конкурентное ингибирование - торможение ферментативной реакции, вызванное действием ингибиторов, структура которого очень близка к структуре S, поэтому и S, и ингибитор конкурируют за АЦ Ф. и связывается с ним то соединение. концентрация которого в окружающей среде больше. E+S — ES—EP. Многие лекарственные препараты действуют по типу конкурентного ингибитора. Примером является применение СУЛЬФАНИЛА (СА). При различных инфекционных заболеваниях, которые вызываются бактериями, применяются СА препараты. Введение СА приводит к ИНГИБИРОВАНИЮ фермента бактерий, которые синтезируют ФОЛИЕВУЮ кислоту. Нарушение синтеза этой кислоты проводит к нарушению роста микроорганизмов и их гибели.2.НЕКОНКУРЕНТНОЕ ИНГИБИРОВАНИЕ -ингибитор и субстрат не имеют структурного сходства; ингибитор не влияет на образование F-S-комплекса; образуется тройной ESI -комплекс.Такие ингибиторы влияют на каталитическое превращение субстрата. Они могут связываются как непосредственно с каталитическими группами AЦ Ф, так и вне АЦ Ф. Но в любом случае они влияют на конформацию активного центра. В качестве неконкурентного ингибитора выступают ЦИАНИДЫ. Они прочно связываются с ионами железа ЦИТОХРОМОКСИДАЗЫ. Этот фермент является одним из компонентов дыхательной цепи. Блокирование дыхательной цепи приводит к мгновенной гибели организме. Действие можно снять только с помощью РЕАКТИВАТОРОВ. 3.СУБСТРАТНОЕ ИНГИБИРОВАНИЕ - это торможение ферментативной реакции, вызванное избытком субстрата. При этом образуется F-S комплекс, но он не подвергается каталитическим превращениям, т.к. делает молекулу фермента неактивной. Действие субстратного ингибитора снимается путём уменьшения концентрации субстрата. 4.АЛЛОСТЕРИЧЕСКОЕ ИНГИБИРОВАНИЕ. АЛЛОСТЕРИЧЕСКИЕ ферменты могут иметь 2 и более единиц протомеров. При этом одна имеет каталитический центр и называется каталитической, а другая - АЛЛОСТЕРИЧЕСКИЙ центр и называется регуляторной. В отсутствии АЛЛОСТЕРИЧЕСКОГО ИНГИБИТОРА субстрат присоединяется к каталитическому центру, и идёт обычная каталитическая реакция. При появлении АЛЛОСТЕРИЧЕСКОГО ИНГИБИТОРА, он присоединяется к регуляторной единице и изменяет КОНФОРМАЦИЮ центра фермента, в результате этого активность фермента снижается.

16.Регуляция активности ферментов: белок – белковые взаимодействия, частичный протеолиз, фосфорилирование, дефосфорилирование, аллостерическая регуляция. Аллостерическая регуляци.Аллостерическими ферментами называют ферменты, активность которых регулируется не только количеством молекул субстрата, но и другими веществами, называемыми эффекторами. Участвующие в аллостерической регуляции эффекторы – клеточные метаболиты часто именно того пути, регуляцию которого они осуществляют.Роль аллостерических ферментов в метаболизме клетки. Аллостерические ферменты играют важную роль в метаболизме, так как они чрезвычайно быстро реагируют на малейшие изменения внутреннего состояния клетки. Аллостерическая регуляция имеет большое значение в следующих ситуациях:при анаболических процессах. Ингибирование конечным продуктом метаболического пути и активация начальными метаболитами позволяют осуществлять регуляцию синтеза этих соединений;при катаболических процессах. В случае накопления АТФ в клетке происходит ингибирование метаболических путей, обеспечивающих синтез энергии. Субстраты при этом расходуются на реакции запасания резервных питательных веществ;для координации анаболических и катаболических путей. АТФ и АДФ – аллостерические эффекторы, действующие как антагонисты;для координации параллельно протекающих и взаимосвязанных метаболических путей (например, синтез пуриновых и пиримидиновых нуклеотидов, используемых для синтеза нуклеиновых кислот). Таким образом, конечные продукты одного метаболического пути могут быть аллостерическими эффекторами другого метаболического пути.Особенности строения и функционирования аллостерических ферментов:обычно это олигомерные белки, состоящие из нескольких протомеров или имеющие доменное строение;они имеют аллостерический центр, пространственно удалённый от каталитического активного центра;эффекторы присоединяются к ферменту нековалентно в аллостерических (регуляторных) центрах;аллостерические центры, так же, как и каталитические, могут проявлять различную специфичность по отношению к лигандам: она может быть абсолютной и групповой. Некоторые ферменты имеют несколько аллостерических центров, одни из которых специфичны к активаторам, другие – к ингибиторам;протомер, на котором находится аллостерический центр, - регуляторный протомер, в отличие от каталитического протомера, содержащего активный центр, в котором проходит химическая реакция;аллостерические ферменты обладают свойством кооперативности: взаимодействие аллостерического эффектора с аллостерическим центром вызывает последовательное кооперативное изменение конформации всех субъединиц, приводящее к изменению конформации активного центра и изменению сродства фермента к субстрату, что снижает или увеличивает каталитическую активность фермента;регуляция аллостерических ферментов обратима: отсоединение эффектора от регуляторной субъединицы восстанавливает исходную каталитическую активность фермента;аллостерические ферменты катализируют ключевые реакции данного метаболического пути.Регуляция каталитической активности ферментов белок-белковыми взаимодействиями.Некоторые ферменты изменяют свою каталитическую активность в результате белок-белковых взаимодействий. Различают 2 механизма активации ферментов с помощью белок-белковых взаимодействий:активация ферментов в результате присоединения регуляторных белков;изменение каталитической активности ферментов вследствие ассоциации или диссоциации протомеров фермента.Регуляция каталитической активности ферментов путём фосфорилирования/дефосфорилирования.В биологических системах часто встречается механизм регуляции активности ферментов с помощью ковалентной модификации аминокислотных остатков. Быстрый и широко распространённый способ химической модификации ферментов – фосфорилирование/дефосфорилирование. Модификации подвергаются ОН-группы фермента. Фосфорилирование осуществляется ферментами протеинкиназами, а дефосфорилирование – фосфопротеинфосфатазами. Присоединение остатка фосфорной кислоты приводит к изменению конформации активного центра и его каталитической активности. При этом результат может быть двояким: одни ферменты при фосфорилировании активируются, другие, напротив, становятся менее активными.Регуляция каталитической активности ферментов частичным (ограниченным) протеолизом.Некоторые ферменты, функционирующие вне клеток (в ЖКТ или в плазме крови), синтезируются в виде неактивных предшественников и активируются только в результате гидролиза одной или нескольких определённых пептидных связей, что приводит к отщеплению части белковой молекулы предшественника. В результате в оставшейся части белковой молекулы происходит конформационная перестройка и формируется активный центр фермента (трипсиноген – трипсин).