- •Міністерство освіти і науки України
- •Contents
- •From the history of electronics
- •Exercise 2
- •The Electron Tube Legacy
- •From Tubes to Transistors
- •The Decade of Integration
- •New Light on Electron Devices
- •Focus on Manufacturing
- •Exercise 4
- •Toward a Global Society
- •Into the Third Millennium
- •From the history of electron devices lesson 8
- •Translate the following words paying attention to affixes.
- •Microwave Tubes
- •The Invention of the Transistor
- •Bipolar Junction Transistors
- •Photovoltaic Cells and Diffused-Base Transistors
- •Integrated Circuits
- •Early Semiconductor Lasers and Light-Emitting Diodes
- •Charge-Coupled Devices
- •Compound Semiconductor Heterostructures
- •Microchip Manufacturing
- •Alessandro volta
- •Volta's pile
- •Thomas alva edison
- •Early Life
- •Family Life
- •Early inventions
- •Menlo park laboratory
- •The Telephone
- •The Phonograph
- •The Incandescent Lamp
- •Electric Power Distribution Systems
- •The Edison Effect
- •Glenmont
- •Motion Pictures
- •Edison's Studio
- •The Electric Battery
- •Attitude Toward Work
- •Ambrose fleming
- •Very happy thought
- •Nonagenarian
- •Consultant
- •Leon charles thevenin
- •Teaching
- •A Good Launch
- •A Crucial Theorem
- •Lee de forest: last of the great inventors
- •In Business
- •Towards the Triode
- •Patent Battles
- •Success
- •Edwin henry colpitts
- •Oscillator
- •Ralph hartley
- •Harry nyquist
- •American physicist, electrical and communications engineer, a prolific inventor who made fundamental theoretical and practical contributions to telecommunications. The Sweden years
- •Education and Career in the u.S.A.
- •Nyquist and fax
- •Nyquist's Signal Sampling Theory
- •Nyquist Theorem
- •Nyquist and Information Theory
- •Russell and sigurd varian
- •Childhood
- •Russell
- •The klystron
- •Celebration
- •Walter brattain
- •"The only regret I have about the transistor is its use for rock and roll”.
- •A Home on the Ranch
- •Physics Was the Only Thing He Was Good at
- •An Off the Cuff Explanation
- •After World War II
- •The First Transistor
- •Rifts in the Lab
- •The Nobel Prize
- •Back to Washington
- •Education
- •Inventor of the Transistor
- •Contributions and Honors
- •Inventor of the first successful computer
- •The Mother of Invention
- •Launching the v1
- •An Electronic Computer
- •The Survivor
- •After the War
- •Rudolph kompfner
- •Architect
- •Internment
- •Travelling-wave Tube
- •Satellites
- •Alan mathison turing
- •The solitary genius who wanted to build a brain.
- •Childhood
- •Computable Numbers
- •Bletchley Park
- •Jack kilby
- •The Begining
- •The Chip that Changed the World
- •Toward the Future
- •Robert noyce
- •A noted visionary and natural leader, Robert Noyce helped to create a new industry when he developed the technology that would eventually become the microchip. Starting up
- •At Bell Labs
- •Founding Fairchild Semiconductor
- •Ic Development
- •Herbert kroemer
- •Too Many Lists
- •Postal Service
- •Theory into Practice
- •Back in the Heterostructure Game
- •Halls of Academia
- •Tuesday Morning, 3 a.M.
- •Heterostructures explained
- •Abbreviations
- •British and american spelling differences
- •Numerical prefixes
- •Prefixes for si units
- •Навчальне видання
- •21021, М.Вінниця, Хмельницьке шосе, 95, внту
- •21021, М.Вінниця, Хмельницьке шосе, 95, внту
Nyquist and fax
In 1918 H. Nyquist began investigating ways to adapt telephone circuits for picture transmission. By 1924 this research bore fruit in "telephotography" - AT&T's fax machine. The principles used in 1924 were the same as those used today, though the technology was comparatively crude. A photographic transparency was mounted on a spinning drum and scanned. This data, transformed into electrical signals that were proportional in intensity to the shades and tones of the image, were transmitted over phone lines and deposited onto a similarly spinning sheet of photographic negative film, which was then developed in a darkroom.
The first fax images were 5x7 photographs sent to Manhattan from Cleveland and took seven minutes each to transmit.
Nyquist's Signal Sampling Theory
In the late 1920s, the only technology to preserve musical recordings was to copy sound waves in wax. Harry Nyquist, an AT&T scientist, thought there was a better way. He wrote a landmark paper (Nyquist, Harry, "Certain topics in Telegraph Transmission Theory," published in 1928) describing the criteria for what we know today as sampled data systems. Nyquist taught us that for periodic functions, if you sampled at a rate that was at least twice as fast as the signal of interest, then no information (data) would be lost upon reconstruction. And since Fourier had already shown that all alternating signals are made up of nothing more than a sum of harmonically related sine and cosine waves2, then audio signals are periodic functions and can be sampled without lost of information following Nyquist's instructions. This became known as the Nyquist frequency, which is the highest frequency that may be accurately sampled, and is one-half of the sampling frequency.
Harry Nyquist (1920's) showed that to distinguish unambiguously between all signal frequency components we must sample at least twice the frequency of the highest frequency component, Figure 1.

Figure 1: In the diagram, the high frequency signal is sampled twice every cycle. If we draw a smooth connecting line between the samples, the resulting curve looks like the original signal. This avoids aliasing3. The highest signal frequency allowed for a given sample rate is called the Nyquist frequency.
Harry Nyquist thought of a way to take an analog signal (such as voice) and code it (just like with the Morse code) using ones (1) and zeros (0). For this, he invented something called a "CODEC" or coder-decoder. This thing that today is the size of a fingernail (a microchip) measures the input analog signal, codes the result of the measurement and sends this code down the telephone lines and trunks. It does so often enough so its peer at the other end of the line can reconstruct the voice signal almost as good as it was at the calling side. N. Erd calls the measuring of the signal "sampling." Good old Harry Nyquist also recommended that the number of samples per second for a good representation of the signal has to be twice as big as the number of Hertz of the fastest sine wave contained in the analog signal. Since the telephone only allows 4 kHz through the phone line, sampling for voice is done 8000 times per second.
