
- •Краткий исторический обзор, состояние и перспективы развития станкостроения
- •1 Общие сведения о металлорежущих станках
- •1.1 Назначение и структура металлорежущих станков
- •1.2 Классификация металлорежущих станков
- •1.3 Понятия о типаже, основных параметрах и размерных рядах станков
- •1.4 Система обозначений (нумерация) станков
- •1.5 Методы образования поверхностей деталей при обработке на металлорежущих станках
- •1.6 Движения в металлорежущих станках
- •1.7 Технико-экономические показатели станков
- •2 Основные узлы и механизмы станков
- •2.1 Базовые детали и направляющие
- •2.1.1 Назначение базовых деталей и направляющих
- •2.1.2 Виды базовых деталей
- •2.1.3 Материал длябазовых деталей
- •2.1.4 Исполнения направляющих
- •2.1.5 Направляющие скольжения
- •2.1.6 Направляющие качения
- •2.1.7 Комбинированные направляющие
- •2.2 Приводы металлорежущих станков
- •2.2.1 Понятие о приводе. Кинематические пары, цепи, схемы
- •2.2.2 Зубчатые механизмы ступенчатого изменения скорости главного движения
- •2.2.3 Зубчатые механизмы ступенчатого изменения подач
- •2.2.4 Сменные зубчатые колёса
- •2.2.5 Механические вариаторы скоростей
- •2.2.6 Реверсивные механизмы
- •2.2.7 Механизмы прерывистого движения
- •2.2.7.1 Храповые механизмы
- •2.2.7.2 Мальтийские механизмы
- •2.2.7.3 Другие механизмы для осуществления периодических движений
- •2.2.8 Суммирующие механизмы
- •2.2.9 Механизмы обгона
- •2.2.10 Компоновки и конструктивные решения приводов главного движения
- •2.2.11 Ручное управление станками
- •2.3 Шпиндели и шпиндельные узлы
- •3 Кинематическая структура станков. Кинематический расчёт и настройка приводов
- •3.1 Кинематические связи в станках
- •3.2 Понятия о наладке и настройке станков
- •1 Оборотфрезы k/z оборотазаготовки (или, сокращённо: 1 об.Фрk/z об.Заг).
- •3.3 Порядок настройки привода на требуемую скорость
- •3.4 Примеры кинематических решений универсальных станков
- •3.4.1 Вертикально-сверлильный станок
- •3.4.1.1 Привод главного движения (вращения шпинделя с инструментом)
- •3.4.1.2 Привод подачи (осевого перемещения шпинделя с инструментом)
- •3.4.2 Универсально-фрезерный станок
- •3.4.2.1 Привод главного движения (вращения шпинделя с инструментом)
- •3.4.2.2 Приводы подач (перемещений стола с заготовкой)
- •3.4.2.3 Приводы быстрых перемещений стола
- •3.4.3 Токарно-винторезный станок
- •3.4.3.1 Привод главного движения (вращения шпинделя с заготовкой)
- •3.4.3.2 Приводы подач, осуществляемых при включении ходового вала
- •3.4.3.3 Приводы винторезных подач
- •3.4.3.5 Приводы быстрых перемещений суппорта
- •3.5 Основные технические характеристики станков. Выбор кинематических характеристик
- •3.6 Регулирование частот вращения шпинделя
- •3.7 Геометрический ряд частот вращения
- •3.8 Предпочтительные числа и ряды предпочтительных чисел. Стандартные значения знаменателей геометрических рядов
- •3.9 Кинематический расчёт приводов станков
- •3.9.1 Основные определения и зависимости
- •3.9.1.1 Структура привода
- •3.9.1.2 Порядок переключения групп передач
- •Значения чисел некоторых геометрических рядов в пределах 1-9500
- •Продолжение табл. 3.6
- •3.9.1.3 Взаимосвязь передаточных отношений в группах передач привода
- •3.9.1.4 Развёрнутые структурные формулы
- •3.9.1.5 Предельные величины передаточных отношений в группах передач
- •3.9.1.6 Диапазоны регулирования привода и отдельных групп передач
- •3.9.1.7 Наибольшее допустимое структурой значение знаменателя ряда
- •3.9.2 Графоаналитический метод определения передаточных отношений
- •3.9.2.1 Построение структурных сеток
- •3.9.2.2 Анализ структурных сеток и выбор оптимального варианта
- •3.9.2.3 Построение диаграммы (графика, картины) частот вращения валов привода
- •3.9.2.4 Выбор оптимального варианта дчв
- •3.9.3 Расчёт чисел зубьев передач групп
- •3.9.4 Особенности расчёта приводов со сменными обратимыми зубчатыми колёсами
- •3.9.5 Особенности расчёта приводов с многоскоростными электродвигателями
- •3.9.6 Расширение диапазона регулирования приводов
- •3.9.6.1 Приводы с переборами (ступенями возврата)
- •3.9.6.2 Приводы с перекрытием (повторением) части ступеней скорости шпинделя
- •3.9.6.3 Применение составных (ломаных) геометрических рядов
- •3.9.6.4 Приводы со сложенной структурой
- •3.9.7 Бесступенчатое регулирование скорости
- •3.9.8 Анализ кинематической структуры привода главного движения
- •3.9.9 Особенности расчета и проектирования коробок подач
3.4.1.1 Привод главного движения (вращения шпинделя с инструментом)
Привод вращения шпинделя с инструментом представляет собой внешнюю кинематическую связь и берёт начало от электродвигателя с частотой вращения nдв=1430 об/мин (мин-1).
Расчётные перемещения конечных звеньев: nдв n, где n – частота вращения шпинделя.
Движение передаётся на гильзу шпинделя через одиночную зубчатую передачу и три группы передач. Уравнение кинематического баланса этой цепи будет следующим:
об/мин.
Три группы передач являются настроечным органом привода, обеспечивающим 12 вариантов передаточных отношений iv, а значит и частот вращения шпинделя. Для получения последовательно возрастающего ряда частот вращения шпинделя на этом станке необходимо переключать передачи: в первую очередь – в группе на три скорости, во вторую и третью – соответственно, в первой и второй группах на две скорости.
Настроечная формула цепи выводится следующим образом:
Реверс шпинделя обеспечивается переключением электродвигателя.
3.4.1.2 Привод подачи (осевого перемещения шпинделя с инструментом)
Подача S измеряется в миллиметрах перемещения инструмента (например, сверла) за 1 его оборот, а значит, привод подачи представляет собой внутреннюю кинематическую связь и берёт начало от вращающегося шпинделя. Конечными звеньями кинематической цепи, таким образом, будут шпиндель вращающийся и тот же шпиндель, но движущийся вдоль своей оси.
Расчетные перемещения конечных звеньев представляются в виде:
1 об.шпS.
Движение передаётся с колеса 27 гильзы шпинделя через ряд одиночных цилиндрических зубчатых передач, две группы передач, предохранительную муфту М1, червячную и реечную передачи пиноли со шпинделем (рейка модуля 3 мм нарезана на пиноли).
Уравнение кинематического баланса цепи:
мм/об.
Две группы передач являются настроечным органом привода, обеспечивающим 9 вариантов передаточных отношений iS, а значит и подач за 1 оборот шпинделя (при каждой его частоте). Для получения последовательно возрастающего ряда подач необходимо переключать передачи сначала во второй по порядку расположения группе на три скорости, а затем – в первой группе на три скорости.
Настроечная формула цепи выводится следующим образом:
3.4.2 Универсально-фрезерный станок
Рассмотрим кинематику универсально-фрезерного станка модели 6Н81 (рис. 6.4).
Для фрезерования поверхности заготовки инструменту сообщается вращение (движение резания), а заготовке – прямолинейное перемещение относительно инструмента (подача), которое может происходить горизонтально или вертикально.
Инструмент (фреза) устанавливается по горизонтальной оси либо непосредственно в шпинделе, либо (что чаще) на оправке, которая устанавливается в шпинделе и поддерживается серьгой Г хобота В. обрабатываемая деталь закрепляется в приспособлении на столе Д, вместе с которым может перемещаться горизонтально в продольном направлении (параллельно длинной стороне стола). Стол находится на поворотной плите Е, а плита – на поперечных салазках Ж, которые могут получать поперечное перемещение (параллельно оси шпинделя). Салазки находятся на консоли И, которая может перемещаться вертикально по направляющим станины Б, закреплённой на основании А. Стол вместе с поворотной плитой может быть повёрнут в горизонтальной плоскости и тогда возможно его перемещение не продольно, а под углом к продольному направлению.