- •II. Введение в математический анализ
- •III. Дифференциальное исчисление функций одной переменной
- •IV. Исследование функций с помощью производных
- •V. Векторные и комплексные функции действительного переменного
- •VI. Неопределенный интеграл
- •VII. Определенный интеграл
- •VIII. Функции нескольких переменных
- •IX. Обыкновенные дифференциальные уравнения
- •X. Системы обыкновенных дифференциальных уравнений
- •XVIII. Кратные интегралы
- •XIX. Криволинейные и поверхностные интегралы
- •XX. Векторный анализ
- •XXI. Элементы теории уравнений математической физики
- •XXII. Элементы теории функций комплексного переменного и операционное исчисление
- •XXIII. Основные численные методы
- •XXIV. Теория вероятностей и элементы математической статистики
- •II. Введение в математический анализ.
- •III. Дифференциальное исчисление функций одной переменной
- •IV. Исследование функций с помощью производных
- •V. Векторные и комплексные функции действительного переменного
- •VI. Неопределенный интеграл
- •VII. Определенный интеграл
- •VIII. Функции нескольких переменных
- •IX. Обыкновенные дифференциальные уравнения
- •X*. Системы обыкновенных дифференциальных уравнений
- •XI. Числовые ряды
- •XVII. Основные уравнения математической физики
- •XVIII*. Операционное исчисление
- •XIX. Теория вероятностей и математическая статистика
- •XX. Основные численные методы
- •Тема I. Векторная алгебра
- •Тема II. Поверхности и линии
- •Тема III. Элементы линейной алгебры
- •1. Матрицы и линейные операции над ними
- •2. Определители
- •3. Системы линейных уравнений. Правило Крамера
- •4. Ранг матрицы. Теорема Кронекера—Капелли. Метод Гаусса
- •5. Произведение матриц
- •6. Арифметическое пространство
- •7. Линейные пространства
- •8. Евклидовы пространства
- •9. Линейные преобразования (операторы)
- •10. Квадратичные формы
- •11. Комплексные числа
- •Тема IV. Введение в математический анализ
- •1. Число. Переменная. Функция
- •2. Предел и непрерывность функций
- •Тема V. Производная и дифференциал
- •1. Производная
- •2. Дифференциал
- •3. Производные и дифференциалы высших порядков
- •4. Свойства дифференцируемых функций
- •5. Формула Тейлора
- •Тема VI. Возрастание и убывание функции. Экстремумы
- •1. Возрастание и убывание функций
- •2. Экстремумы
- •Тема VII. Построение графиков функции
- •1. Выпуклость и вогнутость графика функции Точки перегиба
- •2. Асимптоты
- •3. Общая схема построения графиков функций
- •Тема VIII. Векторные и комплексные функции
- •1. Векторная функция скалярного аргумента
- •2. Кривизна кривой. Формулы Френе
- •3. Комплексные функции. Многочлен в комплексной области
- •Тема IX. Приближенное решение уравнении. Интерполяция
- •1. Приближенное решение уравнений
- •2. Интерполяция
- •Тема X. Функции нескольких переменных
- •7. Метод наименьших квадратов. Понятие об итерационных методах решения систем уравнений
- •Тема XI. Неопределенный интеграл
- •Тема XII. Определенный интеграл
- •1. Определение, свойства и вычисление определенного интеграла
- •2. Приближенное вычисление определенного интеграла
- •3. Несобственные интегралы
- •4. Интегралы, зависящие от параметра.
- •5. Геометрические приложения определенного интеграла
- •Тема XIII. Обыкновенные дифференциальные уравнения
- •1. Дифференциальные уравнения первого порядка
- •2. Дифференциальные уравнения высших порядков
- •3. Линейные дифференциальные уравнения
- •Тема XIV. Системы обыкновенных дифференциальных уравнении. Элементы теории устойчивости
- •1. Системы обыкновенных дифференциальных уравнений
- •2. Системы линейных дифференциальных уравнений с постоянными коэффициентами
- •3. Элементы теории устойчивости
- •Тема XV. Кратные интегралы
- •1. Двойной интеграл
- •2. Тройной интеграл
- •Тема XVI. Криволинейные и поверхностные интегралы
- •1. Криволинейные интегралы; их определение, свойства и приложения
- •2. Формула Грина.
- •3. Поверхностные интегралы
- •Тема XVII. Векторный анализ
- •1. Скалярное и векторное поле. Градиент скалярного поля. Циркуляция, поток, дивергенция и ротор векторного поля
- •2. Формула Стокса
- •3. Формула Остроградского
- •4. Потенциальные и соленоидальные векторные поля
- •5. Операторы Гамильтона и Лапласа
- •Тема XVIII. Ряды
- •1. Числовые ряды
- •2. Функциональные ряды
- •3. Степенные ряды
- •4. Приложения степенных рядов к приближенным вычислениям
- •Тема XIX. Ряды фурье. Интеграл фурье
- •Тема XX. Элементы теории уравнений математической физики
- •Тема XXI. Элементы теории функции комплексного переменного
- •Тема XXII. Операционное исчисление
- •Тема XXIII. Теория вероятностей
- •1. Случайные события
- •2. Случайные величины
- •3. Цепи Маркова
- •Тема XXIV. Элементы математической статистики
- •1. Элементы векторной алгебры и аналитической геометрии
- •2. Элементы линейной алгебры
- •3. Введение в математический анализ
- •4. Производная и её приложения
- •5. Приложения дифференциального исчисления
- •6. Дифференциальное исчисление функций нескольких переменных
- •7. Неопределенный и определенный интегралы
- •8. Дифференциальные уравнения
- •9. Кратные, криволинейные и поверхностные интегралы.
- •10. Ряды
- •11. Уравнения математической физики.
- •12. Теория вероятности и математическая статистика.
Тема IV. Введение в математический анализ
1. Число. Переменная. Функция
Литература. [4], гл. I, § 1—5; [5], гл. I, § 1, (п. 1°), задачи 1—3; гл. X, § 1, задачи 3108—3127; [4], гл. I, § 6, упр. 1—6, § 7, упр. 8—10, 12, 14, 16, 18, 28, 29, 34, 39, 40; § 8, упр. 7; § 9; [5], задачи 7, 8, 161—163, 12, 14, 17, 20, 21, 41, 42, 26.
Рекомендуется также прочитать из [11] § 1.4—1.11 и § 3.1, где содержится более полное и более строгое изложение понятий действительного числа и функции.
Если известен график функции y=f(x), то график функции вида y=kf(mx+b)+a можно построить последовательным преобразованием графика функции y—f(x).
Покажем, например, как с помощью таких преобразований можно построить график функции у=-2sin(2*+2) исходя из известного графика функции y=sinx. От функции y=sinx к функции у =-2sin(2x+2) можно перейти с помощью следующей цепочки преобразований:
![]()
Геометрически это приводит к следующим построениям (рис. 1):
1
.
Строим волну синусоиды y = sinx; 0≤х≤2π.
2. Отмечаем на синусоиде несколько точек и уменьшаем в два раза их абсциссы, не изменяя ординат; таким образом, мы отображаем точку (х; у) в точку (x1; y1), где x1=x/2, y1=y. Соединив полученные точки плавной линией, получим график функции y1=sin2x1, являющийся результатом «сжатия» графика функции y=sinx коси Оу в два раза.
3. Увеличиваем ординаты точек, построенных в предыдущем пункте, в два раза, а затем меняем их знаки на противоположные, не изменяя абсцисс; таким образом, мы отображаем точку (х1; у1) в точку (х2; у2), где у2=-2у1, x2=x1. Соединив полученные точки плавной линией, получим график функции у2=-2sin2x2, являющийся результатом «растяжения» графика функции y1=sin2x1, от оси Ох в два раза с последующим зеркальным отражением графика от оси Ох.
4. Переносим точки, построенные в предыдущем пункте, на —1 в направлении оси Ох (т. е. на единицу влево); таким образом, мы отображаем точку (х2, у2) в точку (X, Y), где Х=х2—1, Y=y2. Соединив полученные точки плавной линией, получим график функции Y=-2sin2(X+1)=-2sin(2X+2), являющийся результатом «сдвига» графика функции у2=-2sin2x2 на -1 в направлении оси Ох. Искомый график функции y=-2sin(2x-2) построен.
Вопросы для самопроверки
Что называется числовой осью? Как изображаются на числовой оси области изменения переменной величины?
Что называется погрешностью, предельной абсолютной погрешностью и предельной относительной погрешностью?
Как записываются приближенные числа?
Каковы правила арифметических действий с приближенными числами'
Дайте определение функции. Что называется областью определения функции?
Каковы основные способы задания функции? Приведите примеры.
Какая функция называется периодической? Приведите примеры.
Какая функция называется сложной' Приведите примеры.
Какие функции называются элементарными? Приведите примеры.
Как, зная график функции y=f(x), можно построить графики функций y=f(mx), y=f(mx+b), y=kf(mx+b)+a?
2. Предел и непрерывность функций
Литература. [4], гл. II, § 1—5, упр. 1, 4, 6, 8—14, 18, 19; § 6, упр. 31—33, 35, 37—40; § 7, 8, упр. 41—44, 46, 48, 49; § 9, упр. 2, 3, 21—23, 25—30, 45, 47, 57, 59; § 10, 11, упр. 60—62; [5], гл. I, § 3.
Можно использовать также пособия [5], гл. I, § 3—5 и [9], ч. I, гл. VI, § 1—6.
Рекомендуется также прочитать из [11] гл. 2 и 3, где дано углубленное изложение материала.
Вопросы для самопроверки
Сформулируйте определения предела последовательности, предела функции при стремлении аргумента к некоторому конечному пределу и предела функции при стремлении аргумента к бесконечности.
Как связано понятие предела функции с понятиями ее пределов слева и справа?
Сформулируйте определение ограниченной функции. Докажите теорему об ограниченности функции, имеющей предел.
Какая функция называется бесконечно малой и каковы ее основные свойства?
Какая функция называется бесконечно большой и какова ее связь с бесконечно малой?
Докажите основные теоремы о пределах функций.
Докажите, что
(«первый замечательный предел»).Сформулируйте определение числа е («второй замечательный предел»).
Сформулируйте определения непрерывности функции в точке и на отрезке. Какие точки называются точками разрыва функции?
Сформулируйте теорему об области непрерывности элементарных функций.
Сформулируйте основные свойства функций, непрерывных на отрезке, и дайте геометрическое истолкование этим свойствам.
Сформулируйте определение порядка одной бесконечно малой относительно другой бесконечно малой.
Покажите, что при x→0 бесконечно малые sinx, arcsinx, tgx, arctgx попарно эквивалентны.
Пусть х→0. При каком значении а бесконечно малые asin2x и 1—cosх эквивалентны?
После изучения темы IV выполните контрольную работу 3.
