Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
UMK_Planirovanie_proizvodstvа.doc
Скачиваний:
96
Добавлен:
14.03.2016
Размер:
1.16 Mб
Скачать

Тема 4. Планирование на предприятиях энергетического хозяйства города.

Топливно-энергетический комплекс (ТЭК) представляет собой сложную и развитую систему добычи природных энергетических ресурсов, их обогащения, преобразования в мобильные виды энергии и энерго­носителей, передачи и распределения, потребления и использования во всех отраслях национального хозяйства. Объединение таких разнородных частей в единый национально-хозяйственный комплекс объясняется их технологическим единством, организационными взаимосвязями и экономической взаимозависимостью.

Неразрывная цепь добычи — преобразования — передачи — распределения — потребления — использования энергоресурсов определяет технологическое единство топливно-энергетического комплекса.

Организационно комплекс разделяется на отрасли, системы и предприятия ТЭК:

добывающие: угледобыча, нефтедобыча, газодобыча, добыча торфа и сланцев, добыча урана и других ядерных материалов;

преобразующие (перерабатывающие): углепереработка, нефтепереработка, газопереработка, переработка торфа и сланцев, электроэнергетика, атомная энергетика, котельные, получение местных энергоносителей — сжатого воздуха и газов, холода и т.п.;

передающие и распределяющие: перевозка угля, торфа и сланцев, нефтепроводы и другие способы транспорта нефти и нефтепродуктов, газопроводы, транспорт газовых баллонов, электрические сети, включая высоковольтные линии электропередачи (ЛЭП) и низковольтные распределительные электросети, паро- и теплопроводы, трубопроводы местных энергоносителей, газобаллонное хозяйство;

потребление и использование: во всех отраслях национального хозяйства на технологические, санитарно-технические и коммунально-бытовые нужды, объединяемые понятием «Энергетика отраслей национального хозяйства», разделяемой на промышленную энергетику, энергетику транспорта, энергетику сельского хозяйства, коммунальную энергетику и т.п.

Как видим, организационного единства топливно-энергетического комплекса нет, хотя руководит значительным количеством его отраслей Министерство топлива и энергетики. В современных условиях произошло еще большее организационное обособление отдельных частей ТЭК с образованием локальных хозяйственных единиц, как правило, акционерных обществ (АО) с участием государственного капитала и капитала вышестоящих административно-производственных структур. Например, самостоятельными акционерными обществами стали некоторые электростанции с участием районных энергетических объединений (РАО), РАО ЕЭС (единой энергетической системы) России, Тем не менее, технологическое единство производства и потребления топливно-энергетических ресурсов приводит к необходимости очень тесных информационных связей между различными частями ТЭК, особенно в электроэнергетике. Здесь существует единая система оперативного управления, объединяющая все электроэнергетические объекты независимо от уровня управления (станции, сети, системы, Единая энергосистема страны) и формы собственности (государственная, акционерная, коллективная, частная).

Различные отрасли и составные части ТЭК экономически объединяются на российском и мировом энергетическом рынке (по прямым договорам, через товарно-сырьевые биржи, по государственным заказам и квотам на экспорт и т.п.), будучи хозяйственно самостоятельными субъектами рынка. В то же время технологическое единство ТЭК делает субъектов энергетического рынка взаимозависимыми. А в такой целостной отрасли как электроэнергетика и при теплоснабжении от ТЭЦ и котельных, когда потребители в полном смысле слова привязаны к электрическим и тепловым сетям, возникает естественная монополия произ­водителей.

Монополизм электроэнергетики естественным образом затрудняет развитие рыночных отношений между производителями и потребителями энергии. Решение этой проблемы может быть решено путем организации Федерального общероссийского рынка энергии и мощности (ФОРЭМ).

Основные принципы, установленные государством при формировании Федерального общероссийского рынка энергии и мощности, следующие:

рынок формируется из производителей энергии — региональных акционерных обществ (АО «Энерго») и крупных потребителей энергии, включая перепродавцов. Весь энергетический рынок делится на зоны — Европейскую и Сибирскую, где имеются существенные экономические различия в условиях производства и поставок энергии и мощности;

на рынке заключаются долгосрочные, среднесрочные и краткосрочные контракты на поставку энергии и мощности между субъектами ФОРЭМ. Краткосрочные договоры и заказы, в том числе суточные, заключаемые в реальном режиме времени, образуют так называемый «спотовый рынок»;

ИДУ (центральное диспетчерское управление) и ОДУ (объединенные диспетчерские управления) осуществляют диспетчерское регулирование графиков нагрузки, обеспечивают необходимое резервирование энергетических мощностей;

государство контролирует и регулирует региональные тарифы на энергию и мощность, включая образование многоставочных тарифов.

Со временем, когда ФОРЭМ обретет более четкие очертания, появятся и другие его технические, экономические и организационные характеристики.

Электроэнергетика является важнейшей составной частью топливно-энергетического комплекса страны, обладает рядом специфических черт, делающих ее непохожей ни на одну отрасль промышленности. По существу, она должна быть признана отраслью национального хозяйства, поскольку пронизывает все его сферы. Главными отличительными особенностями электроэнергетики следует считать:

невозможность запасать электрическую энергию (в значительных масштабах и тепловую), в связи, с чем имеет место постоянное единство производства и потребления;

зависимость объемов производства энергии исключительно от потребителей и невозможность наращивания объемов производства пожеланию и инициативе энергетиков;

необходимость оценивать объемы производства и потребления энергии не только в расчете на год, как это делается для других отраслей промышленности и национального хозяйства, но, и часовые величины энергетических нагрузок:

необходимость бесперебойности энергоснабжения потребителей, являющейся жизненно важным условием работы всего национального хозяйства;

— планирование энергопотребления на каждые сутки и каждый час в течение года, т. е. необходимость разработки графиков нагрузки на каждый день каждого месяца с учетом сезона, климатических условий, недели и других факторов.

Эти специфические условия породили отраслевые традиции в организации электроэнергетики, при этом главной особенностью является создание и функционирование единой энергетической системы страны.

В разное время отдельные части ТЭК административно подчинялись разным министерствам и ведомствам. Сейчас наряду с другими отраслями топливно-энергетического комплекса электроэнергетика административно входит в состав Министерства топлива и энергетики (Минтопэнерго). Вплотную к электроэнергетической отрасли, руководимой Минтопэнерго, примыкает и участвует в работе по единому графику атомная энергетика — система Министерства атомной энергетики (Минатомэнерго). Однако в условиях рыночной экономики все эти ор­ганизационно-административные построения могут меняться, а отдельные предприятия и их объединения получают существенную степень экономической свободы и независимости от вертикальных организационных структур.

Основой структуры электроэнергетической отрасли являются электрические станции различных типов.

По первичному энергоресурсу, потребляемому для производства электрической (иногда также и тепловой) энергии, электростанции мож­но подразделить на: тепловые (топливные) — (ТЭС), в том числе теплоэлектроцентрали — (ТЭЦ) и конденсационные электростанции — (КЭС), атомные — (АЭС), гидравлические — (ГЭС), прочие (солнечные, геотермальные, приливные, ветряные и др.).

Все перечисленные типы электростанций обладают разными эко­номическими показателями и поэтому имеют несколько разные области применения.

Главными показателями, определяющими всю экономику энергетического производства, являются капитальные затраты или для сравнения разных электростанций удельные капиталовложения (к), руб/кВт, и годовые расходы по эксплуатации или себестоимость производства единицы энергии (s), коп/кВт.ч. Все другие технико-экономические показатели так или иначе агрегируются именно в этих.

Наиболее распространенными, вырабатывающими около 80 % электроэнергии, являются тепловые электростанции (ТЭС). Они подразделяются на станции теплофикационные (теплоэлектроцентрали — ТЭЦ) и конденсационные (КЭС). ЭС в зависимости от и начального давления применяемого пара (перед турбогенераторами) делятся на:

ТЭС низкого давления — 13—25 ата (1,3—2,5 МПа). Практически не применяются, хотя в связи с тенденциями к созданию на предприятиях собственных маломощных источников энергии могут возникнуть вновь;

ТЭС среднего давления — 25—45 ата (2,5—4,5 МПа). Считаются устаревшими, но кое-где еще сохранились. Как правило, на этих станциях проводилась реконструкция, установлены новые котло- и турбоагрегаты, работающие на более высоких параметрах пара. Иногда в целях повышения экономичности на таких станциях устанавливались так называемые «предвключенные» турбоагрегаты — противо-давленческие турбины высокого давления, отработанный пар которых соответствовал нужному среднему давлению. Чаще эти станции переводились в режим работы с «ухудшенным вакуумом» — конденсаторы этих турбин использовались как теплообменники, производящие горячую воду для теплофикации. В этих же целях на ряде ТЭС среднего давления имеющиеся нерегулируемые отборы пара, ранее предназначавшиеся исключительно для собственных нужд, превращены в теплофикационные отборы. В обоих указанных случаях КЭС, по существу, превращались в ТЭЦ;

ТЭС высокого давления — 90 ата (9 МПа);

ТЭС сверхвысокого давления—130—240 ата (13—24 МПа). 

Все эти исторические тенденции к росту начального давления пара вызваны стремлением к повышению экономичности. Согласно второму закону термодинамики, внутренний относительный КПД теплового цик­ла зависит от соотношения начального и конечного теплосодержания ра­бочего тела, в данном случае — водяного пара. Поэтому чем выше начальное давление и глубже вакуум в конденсаторе паровой турбины, тем выше КПД производства энергии. Однако даже теоретически он не может быть выше 44 — 45 %. Повышение экономичности ТЭС — глобальная задача человечества, наиболее известный и проверенный путь ее решения — теплофикация, создание ТЭЦ, а в последнее время — парогазовых циклов.

Теплоэлектроцентрали (ТЭЦ), предназначенные для совместной комбинированной выработки тепловой и электрической энергии, различаются по типам установленных на них турбогенераторов.

Атомные электростанции (АЭС), являющиеся, по существу, теплостанциями, в которых пар получается не при сжигании топлива, а освобождении внутриатомной энергии, различаются по типам ядерных реакторов (в том числе на быстрых или на медленных нейтронах), мощности и некоторым другим признакам. 

АЭС работают на ядерном топливе, в качестве которого используются уран-233 (U-235), уран-233 (U-233) и плутоний-239 (Рu-239). Ядерное горючее обладает теплотой сгорания примерно в 2,5 миллиона раз выше, чем теплота сгорания обычного органического топлива. 1 кг урана может столько дать столько теплоты, сколько может быть получено при сжигании от 2,6 до 3,0 тыс. т каменного угля. В 1 т природного урана содержится примерно 7 кг делящегося изотопа урана-235, а остальные 99,3 % приходятся на долю неделящегося изотопа урана-238. Однако в специальных реакторах попадании быстрых нейтронов в ядро урана-238 происходит несколько реакций, в результате чего образуется новое делящееся вещество — плутоний-239, который может быть топливом для реакторов на быстрых нейтронах.

На промышленных АЭС России установлены энергетические ядерные реакторы с водой под давлением корпусного типа ВВЭР и канальные водографитовые реакторы РМБК. В целях повышения безопасности разрабатываются новые конструкции реакторов для оснащения перспектив-АЭС, а также атомных станций теплоснабжения (ACT). Целью развития атомной энергетики является создание безотходных АЭС с реакторами-размножителями на быстрых нейтронах, где одновременно с производством энергии образуется плутоний-239, служащий для дальнейшего использования.

Гидроэлектростанции бывают двух типов: собственно ГЭС и гидроаккумулирующие (ГАЭС), созданные специально для регулирования графика нагрузки. Гидростанции являются единственными источниками энергии, использующими возобновляемые природные энергоресурсы — естественный речной водоток. Как известно, в природе происходит непрерывный круговорот воды: испарения естественных водоемов, преимущественно морей и океанов, конденсируются в атмосфере и выпадает в виде дождя и снега. Эти атмосферные осадки составляют основной объем речного водотока. Другие его составные части — вековые снега и ледники горных массивов, постепенно тающие ввиду общего потепления планетарного климата. 

Устройство ГЭС детскую водяную вертушку или древнейшее изобретение человечества — водяную мельницу. Некоторые гидростанции строятся на естественном водотоке {бесплотинные ГЭС), но большинство из них требует сложных и дорогостоящих гидротехнических сооружений (плотины, дамбы, деривационные каналы и т.п.), затопления значительных территорий, для водохранилищ, создания перепада высот над уровнем моря. Масса воды на высотной отметке, называется верхним бьефом, на нижней отметке — нижним бьефом. Перепад давлений между бьефами реализуется для получения энергии.

Собственно ГЭС различаются по напору — высоконапорные (горные) и низконапорные (равнинные); по зарегулированности естественного водотока — с суточным, сезонным и многолетним регулированием; по некоторым другим признакам, в частности — по мощности.

Гидроаккумулирующие станции (ГАЭС) — искусственные сооружения, созданные на возвышенностях над естественными водоемами. В часы ночного провала нагрузки они работают в режиме насосов, закачивающих воду на верхний бьеф водохранилища, а в часы пика нагрузки срабатывают эту воду, развивая электрическую мощность и вырабатывая электроэнергию для сглаживания суточной неравномерности электропотребления.

Ветряные, солнечные, приливные, биоэнергетические станции не нашли пока еще сколько-нибудь существенного применения в электроэнергетике. Также пока что нецелесообразно всерьез говорить о термоядерных электростанциях, на пути создания которых в настоящее время имеются очень большие трудности. Аналогичное положение возникло с магнитогидродинамическим способом производства электроэнергии, с так называемыми МГД-генераторами.

Энергетические, технические и экономические свойства электростанций различных типов используются при оптимизации покрытия суточного графика нагрузки.  Состав энергетических систем

Энергетическая система состоит из многочисленных энергетических объектов, включающих:

электрические станции;

электрические и тепловые сети (сетевые предприятия);

систему оперативно-диспетчерского управления, представляющую собой производственно-управленческую иерархию: Центральное диспетчерское управление (ЦДУ), региональные объединенные диспетчерские управления (ОДУ), местные диспетчерские пункты в энергосистемах и на энергетических предприятиях (ДУ);

энергоремонтные предприятия, производящие централизованный ремонт энергетического оборудования;

строительные организации, обслуживающие периодическую реконструкцию и новое строительство энергетических объектов;

систему технико-экономического управления: от Российского (РАО «ЕЭС») до региональных (местных) энергетических управлений АО «Энерго»), в составе которых особенно важны сбытовые подразделения (энергосбыты) и организации энергетического контроля (Энергодзор);

вспомогательные предприятия и организации (автомобильные и железнодорожные хозяйства, подсобные службы и т.п.).

Кроме электростанций весьма важным элементом электроэнергетических систем являются энергетические коммуникации, прежде всего электрические сети, включая мощные линии электропередачи (ЛЭП).

По функциональному назначению линии электропередачи можно разделить на две большие группы; межсистемные и распределительные.

Межсистемные линии электропередачи выполняют функцию транспорта энергии между энергосистемами и отдельными предприятиями. Это обычно линии высокого напряжения — 750 кВ, 500 кВ, 330 кВ, 220 кВ, редко—110 кВ.

Распределительные линии доводят энергию до потребителей. Это обычно линии 6—10 кВ, 35 кВ, реже 110 кВ, если потребителями являются предприятия промышленности, транспорта, сельского хозяйства и т.д. Для коммунально-бытовых потребителей распределительные линии бывают напряжением 220 В, 380 В, 6—10 кВ.

Обслуживанием линий электропередачи и подстанций занимаются предприятия электрических сетей (ПЭС). Предприятия электрических гей, обслуживающие магистральные сети, выделены в самостоятельные крупное объединение Магистральных электросетей (МЭС). Электрические подстанции представляют собой довольно сложный комплекс оборудования, требующий квалифицированного обслуживания. Здесь установлены электрические трансформаторы разного напряжения и мощности — от десятков до сотен киловольт-ампер (кВА), высоковольтные выключатели, реакторы (аппараты, компенсирующие токи короткого замыкания), разъединители и др.

Для эксплуатации распределительных сетей создается несколько типов предприятий: предприятия электросетей (ПЭС), входящие в состав энергосистем; предприятия-перепродавцы, находящиеся на полном хозрасчете; предприятия электросетей — перепродавцы, обслуживающие небольшие города и населенные пункты и покупающие энергию у энергосистем. В ведении этих предприятий находятся также трансформаторные подстанции (ТП) и распределительные устройства (РП). Они трансформируют электроэнергию с высокого (110, 35, 6—10 кВ) на низкое, потребительское, напряжение (220—380 В) и распределяют ее в районах и микрорайонах города для жилых и общественных зданий.

Предприятия тепловых сетей (ПТС) также эксплуатируют магистральные и распределительные паро- и теплопроводы в городах и населенных пунктах. Как правило, крупные ПТС, входящие в состав энергосистем, покупают тепло у городских ТЭЦ и крупных отопительных котельных и продают его местным (муниципальным) предприятиям и другим подразделениям городского хозяйства. При муниципалитетах часто создаются свои энергетические учреждения — Дирекции городских котельных, занимающиеся эксплуатацией как источников теплоснабжения (котельных, редко — ТЭЦ), так и тепловых распределительных сетей.

Другие подразделения энергосистем занимаются обслуживанием электростанций и сетевых предприятий, а также управляют процессами производства, передачи, распределения и потребления энергии.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]