Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лучше эту.docx
Скачиваний:
188
Добавлен:
10.03.2016
Размер:
1.61 Mб
Скачать

59. Принцип действия поперечных дифференциальных защит лэп.

   Поперечная дифференциальная защита применяется на параллельных линиях, имеющих одинаковое сопротивление. Основана на сравнении величин и фаз токов, протекающих по обеим линиям.

            Распределение токов в нормальном режиме и при внешних КЗ показано на рис. 8.3.1. II=IIII*I=I*II. При КЗ на одной из линий(см. рис. 8.3.2.): на питающем конце – токи II и III совпадают по фазе, но различаются по величине; на приемном конце (на котором отсутствует источник питания, или его мощность меньше, чем на питающем конце) I*I и I*II противоположны по фазе, хотя могут и совпадать по величине.

            По этим признакам можно судить о КЗ на одной из линий.

            Различают две разновидности поперечных дифференциальных защит: токовую и направленную.

            Токовая применяется на параллельных линиях, включенных под один общий выключатель.

            Направленная применяется на параллельных линиях с самостоятельными выключателями.

  

Токовая поперечная дифференциальная защита

 

8.3.2.1. Принцип действия защиты

    Рис. 8.3.1.                   Рис. 8.3.2.

            Токовая поперечная дифференциальная защита предназначена для параллельных линий с общим выключателем. При одностороннем питании защита устанавливается со стороны источника питания, при 2х-стороннем, с обоих сторон.

            Принципиальная схема защиты для одной фазы представлена на рис. 8.3.3. Коэффициенты трансформации трансформаторов тока nT1=nT2=nT. Вторичные обмотки трансформаторов тока соединяются разноименными зажимами по схеме с циркуляцией токов в соединительных проводах и параллельно к ним включается обмотка токового реле.

            В нормальном режиме и при внешнем КЗ (рис. 8.3.3. а)): II=III, поэтому при отсутствии погрешностей у трансформаторов тока IP=0. Защита не реагирует на внешние КЗ, нагрузку и качания. Её выполняют без выдержек времени и не отстраивают от токов нагрузки.

 

 

 

 

 

            С учетом погрешностей трансформаторов тока, в нормальном режиме через реле протекает ток небаланса, его можно условно разделить на две составляющие:

 

            Iнб=I¢нб+ I¢¢нб                                                 (8.7.)

где:      I¢нб – вызвана погрешностью трансформаторов тока;

            –вызвана различием первичных токов из-за неточности равенства сопротивления линий.

           

            Ток срабатывания защиты должен быть больше тока небаланса:

 

            IC.P. > Iнб                                                    (8.8.)

 

 

 

                        Рис. 8.3.3.

 

            При КЗ на одной из параллельных линий (рис. 8.3.3. б)) ток протекающий по поврежденной линии больше тока протекающего по неповрежденной: II > III если при этом IP > IC.P. – защита отключает линии.

60. Токовая защита нулевой последовательности для сетей с заземленной

нейтралью

Токовые защиты нулевой последовательности в сетях с глухозаземленной нейтралью.

Защита выполняется трехступенчатой. Измерительными реле тока подклю­чаются к фильтру тока нулевой последовательности. Реле тока срабатывают при возрастании тока нулевой последовательности. Схемы защиты выполняется аналогично схе­мам токовой защиты от междуфазных КЗ.

Защита нулевой последовательности имеет преимущества:

1. Имеет более высокую чувствительность.

2. Имеет меньшую выдержку времени  последней ступени.

 

 

В ра­диальной сети с односторонним питанием короткие замыкания на землю возникают на участках, ограниченных об­мотками трансформаторов — Т1- Т3,соединенных в звезду. Путь прохождения тока нулевой последовательности определяется заземленными нейтралями. В данной схеме ток нулевой последовательности проходит по поврежденному участку через за­земленную нейтраль трансформатора Т1 и точку короткого замы­кания.

На линиях АБ и БВ и трансформаторах Т1—Т3 установле­ны токовые защиты А2—А5 от междуфазных повреждений и то­ковые защиты нулевой последовательности А02—А05 от КЗ на землю.

 

Первая ступень защиты – токовая отсечка без выдержки времени

Ток срабатывания выбирается по условю

,

 где  = 1,3 при использовании реле РТ-40 для линий 110—220 кВ.

- начальный ток нулевой последовательности, при замыкании на землю на шинах приемной подстанции в точке .

Рассматривают два вида КЗ - однофазное КЗ и- двойное КЗ.

 

Токовая отсечка не должна срабатывать

1. От токов ну­левой последовательности, кратковременно появляющихся при не­одновременном включении фаз выключателя. Для этого в схему защиты ставят промежуточное реле, создающее замедление около трех-четы-рех периодов.

2. В неполнофазном режиме, возникающем в цикле офнофазного АПВ на защищаемой линии.

Преимущество токовой отсечки нулевой по­следовательности.

1. Имеет большую защищаемую зону чем ТО, включенная на полные токи фаз. Это объясняется сильным наклоном кривой тока КЗ.

 

Вторая ступень защиты — токовая отсечка нулевой по­следовательности с выдержкой времени.

 Параметров защиты  и  необходимо отстроить от первых ступеней защит нулевой последовательности А03, А04. Это защиты линии БВ и трансформатора Т2.  Тока срабатывания выбирается по условиям

где  =1,1.

Из двух значений принимается большее.

Выдержка времени определяется как и выдержка времени второй ступени токовой защиты на полные токи фаз.  Обычно не превышает 0,5 с.

Третья ступень защиты — максимальная токовая за­щита нулевой последовательности.

При повреждениях на землю в точках иток нулевой последовательности с высшей сто­роны трансформаторовТ2 и ТЗ отсутствует, поэтому защиту А04и А05  выполняют без выдержки времени

Выдержки времени ; и защит А01—А03 выбирают по ступенчатому принципу. Так как , то токовую защиту ну­левой последовательности на головных участках можно выполнить более быстродейст­вующей, чем токовую защиту с включением реле на полные токи фаз.

В нормальном режиме и при многофазных КЗ в реле проходит только ток небаланса

Ток срабатывания ре­ле можно по условию

Максимальный ток небаланса протекает по реле при КЗ.

Ток небаланса определяется по формуле.

,

где ε = 10 % - максимальная погрешно­сть трансформаторов тока,

=0,5 ... 1,0  - учетом коэффициента их однотипности

—установившийся ток внешнего трехфазного короткого замыкания при повреждении в начале следующего участка. (для защиты A02 в точке ).

Когда выдержка времени защиты менее =0,3 с, при определении тока небаланса следует учи­тывать апериодическую составляющую

где =2 при времени действия защиты до=0,1 с и=l,5 при 0,1<=<=0,3.

где =1,25 — коэффициент отстройки, учитывающий  погреш­ность и необходимый запас.

Если чувствительность защиты недостаточно, то ее можно повысить если принять .

При этом внешние многофазные КЗ отклю­чаются со временем, меньшим времени действия токовой защиты нулевой последовательности. Ток небаланса от токов КЗ в реле нулевой защиты можно не учитывать. В этом случае достаточно ее ток срабатыва­ния выбирают по расчетному току небаланса в нормальном режиме

=.

 Ток значительно меньше тока, поэто­му при внешних многофазных КЗ измерительный орган защиты срабатывает. Для обеспечения возврата реле после отключения внешних коротких замыканий при выборе тока сраба­тывания учитывается коэффициент возвратаkB:

коэффициенты ,- такие же как и у МТЗ на полные токи фаз.

=1,1-1,2;

Защита нулевой последовательности по сравнению с защитой на полные токи фаз имеет меньшую выдержку времени и большую чувствител

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]