Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 / Алгебра и геометрия / 2 книга - краткий.doc
Скачиваний:
94
Добавлен:
09.03.2016
Размер:
2.12 Mб
Скачать

Полярное уравнение эллипса, гиперболы, параболы

Выведем полярное уравнение для отличного от окружности эллипса, параболы или правой ветви гиперболы. Для этого совместим полюс полярной системы координат с левым фокусом эллипса (правым фокусом гиперболы) или единственным фокусом параболы, а полярную ось направим перпендикулярно директрисе d, соответствующей фокусу. Обозначим через F, р и ε соответственно фокус, фокальный параметр и эксцентриситет кривой. Пусть М — произвольная точка кривой, МF = r— полярный радиус точки М, φ — ее полярный угол. Тогда

- полярное уравнение эллипса, отличного от окружности, параболы, правой ветви гиперболы.

Для левой ветви гиперболы

  • полярное уравнение левой ветви гиперболы.

Классификация кривых второго порядка (квп)

Уравнение вида

ax2+bху+су2+dx+еу+f=0, (1)

где a²+ b²+ c² ≠ 0 , называется уравнением кривой второго порядка в прямоугольноу системе ккординат OXY. Преобразуем систему координат таким образом, чтобы уравнение (1) приняло наиболее простой вид.

1. Если в уравнении коэффициент b ≠ 0, то можно повернуть систему координат OXY на угол α такой, что в новой системе координат O’X’Y’ уравнение (1) не будет содержать член с произведением xy’.

Действительно, согласно формулам поворота x = x’cosα – y’sinα, y = y’sinα + y’cosα.. Подставляя значения x и y в (1) легко подсчитать, что коэффициент при xy примет вид

-2acosα sinα + b²cos²α - b²sin²α + 2csinα cosα.

Упрощая, получаем

-asin2α + bcos2α + csin2α = 0,

(a - c)sin2α = bcos2α, т.е.

,

Таким образом, в дальнейшем предполагаем, что уравнение КВП имеет вид

ax2+bху+су2+dx+еу+f=0. (2)

2. Если в уравнении (2) а ≠ 0 и d ≠ 0, либо с ≠ 0 и е ≠ 0, то, осуществляя параллельный перенос системы координат ОХУ, получаем уравнение КВП, не содержащее член с х, соответственено у.

Действительно, пусть а ≠ 0, d ≠ 0. Выделим полный квадрат при переменной х в (2).

Применим формулы параллельного переноса

, ,

Тогда уравнение примет вид

где . Если же с ≠ 0 и е ≠ 0, то аналогичным образом исключаем в полученном уравнении член с у.

Итак можно считать, что КВП представляется одним из трёх видов уравнений:

ах² + by² + c = 0;

ах² + by + c = 0;

аy² + bх + c = 0.

Рассмотрим случаи:

  1. с ≠ 0. Тогда

Если – (а/с) › 0 и – (b/c) › 0, то это уравнение эллипса.

Если – (a/c) ‹ 0 b – (b/c) ‹ 0, то получаем пустое множество точек на плоскости.

Если – (a/c) › 0 и – (b/c) ‹ 0, то уравнение гиперболы.

Аналогичным образом получам гиперболу вытянутую вдоль оси ОУ.

  1. с = 0. Тогда ах² + by² = 0;

Если a и b – разных знаков, то всегда можно считать, что а › 0

b ‹ 0.

Уравнение будет задавать две пересекающиеся прямые axby = 0

Если же a и b одного знака, то уравнению удовлетворяет единственная точка О (0,0).

Вывод: любая кривая второго порядка является эллипсом, гиперболой, параболой, парой пересекающихся прямых, парой параллельных прямых, прямой, точкой или пустым множеством.

Укажем еще один способ классификации КВП.

Соседние файлы в папке Алгебра и геометрия