Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКА ПЛАСТА.doc
Скачиваний:
101
Добавлен:
02.03.2016
Размер:
1.56 Mб
Скачать

18.Схема фазовых превращений индивидуальных компонентов углеводородов.

Индивидуальные углеводороды могут находиться в парообразном (газовом), жидком и твердом состояниях. При некоторых определенных для данного вещества давлениях и температурах часть его может находиться в жидком (или твердом), а другая часть – в газообразном состояниях. Возможно, равновесное состояние индивидуального вещества одновременно во всех трех фазах. Чтобы судить о том, при изменении каких независимых переменных (или параметров) возможно сущест­вование тех или иных фаз для индивидуального вещества (или системы), находящегося в равновесном состоянии, пользуются прави­лом, которое выражается уравнением: 2+n-k=F, где п-число компонентов; к-число фаз; F-число степеней свободы.

Под степенями свободы подразумеваются такие независимые переменные, как t-ра, давление и состав фаз. Для систем, находящихся одновременно в двух- и трехфазном состоянии, кон­центрация компонентов не является независимой переменной, хотя концентрация в данной фазе – это переменная правила фаз. Индивидуальные вещества, находящиеся в трехфазном состоянии, не имеют степеней свободы. Это состояние выражается инвариантной тройной точкой на соответствующей диаграмме. Индивидуальные вещества, находящиеся в двухфазном состоянии (например, пар и жидкость), имеют одну степень свободы. Для определения всех свойств фаз достаточно задаться одним лишь значением температуры. Следует отметить, что этим правилом устанавливается только природа паз, а не их соотношения. Двухкомпонентные системы, находящиеся в двухфазном состоянии, имеют две степени свободы, т. е. состояние такой системы будет определяться температурой и давлением. Для трехкомпонентной системы, существующей в виде двух фаз, число степеней свободы увеличивается до трех. Состояние такой системы определяется t-рой, давлением и еще некоторым параметром, выражающим состав фаз, например концентрацией одного компонента в какой-либо фазе или отношением концентрации одного компонента к концентрации другого в той же фазе. Однако природный газ состоит из гораздо большего числа компонентов, а, следовательно, для определения состояния системы требуется знание большого числа параметров, например, концентраций компонентов в какой-либо фазе. Это требование исключает или делает весьма неудобным применение правила фаз. Соотношения фаз индивидуальных углеводородов в зависимости от давления, объема и температуры описываются на основании данных исследования пространственными кривыми в координатах рVТ. Но поскольку подобные графики сложны, предпочитают пользо­ваться более простыми, выражающими зависимость давления от температуры для некоторого постоянного удельного объема и дав­ления от удельного объема для некоторой постоянной температуры (рис.1).

Рис.1. Фазовая диаграмма

Как видно из диаграмм, различие в фазах наблюдается не при всех температурах. При некоторой температуре (определенной для каждого индивидуального углеводорода) данный газ, как бы велико не было давление в системе, не может находиться в жидкой фазе. Такую температуру и давление, соответствующее ей, называют критическими. На фазовых диаграммах точка, соответствующая критическим температуре и давлению, называется критической точкой С (см. рис.1). В критической точке и закритической области вещество находится в однофазном состоянии и свойства жидкости и пара, например плотность, вязкость, становятся одинаковыми, а скрытая теплота испарения и поверхностное натяжение обращаются в нуль. Проследим за изменением удельного объема метана в зависимости от давления для какой-то определенной температуры ниже критической (рис.2). При уменьшении объема давление возрастает (и, наоборот, при увеличении давления уменьшается объем). Но при некотором удельном объеме (давлении) появляется жидкая фаза. Начиная с этого момента, с уменьшением объема не происходит увеличение давления, и только тогда, когда все вещество перейдет в жидкое состояние, резко увеличится давление.

Точки на диаграмме, в которых вещество начинает переходить в жидкую фазу, т е. когда появляются первые капли сконденсировавшейся жидкости, называются точками росы (начала конденсации). Совокупность этих точек для различных температур дает линию точек росы (СВ на базовой диаграмме рис.2). Точки на диаграмме, в которых вещество полностью перешло в ж-ть, наз. точками кипения (кривая АС на диаграмме рис.2). Обе линии сходятся в критической точке С. Как видно из диаграммы, чем выше температура, тем при большем давлении и меньшем удельном объеме появляется жидкая фаза. Наконец, при критической температуре жидкой фазы нет при любых давлениях.