
- •1.1. Общая характеристика
- •1.2. Что такое компьютерная сеть?
- •1.3. Основные требования, предъявляемые к телекоммуникационным сетям
- •1.4. Компоненты аппаратного и программного обеспечения сетей
- •4.5. Классификация сетей
- •По топологии
- •Концепция файлового сервера
- •Концепция архитектуры «клиент – сервер»
- •Локальная сеть моноканальной топологии
- •С пКеть кольцевой структуры
- •Сеть звездообразной структуры
- •2.1. Определение Интернета
- •2.2. Историческая справка
- •2.3. Возможности Интернета
- •2.4. Структура и основные принципы работы Интернета
- •2.5. Навигация в Интернете
- •Браузеры
- •2.6. Семейство программ корпорации Microsoft для работы в Интернете
- •2.7. Информация в сети Интернет
- •Поисковые системы
- •Каталоги интернет-ресурсов
- •Эффективный поиск
- •Метапоисковые системы
- •Поиск программ и других файлов
- •Источники специализированной информации
- •2.8. Общение в Интернете телеконференции
- •Outlook express для работы с телеконференциями
- •Проектирование web-сайтов
- •1. Этапы создания Web-сайта
- •2. Терминология Web-проектирования
- •3. Создание Web-сайтов средствами языка html
- •Основные понятия языка html
- •Общая структура простейшего документа html
- •Теги форматирования текстового потока
- •Парные теги форматирования заголовков и подзаголовков документа
- •Парные теги форматирования символов текста
- •Теги списков
- •Теги списков определений
- •Теги цвета
- •Теги линий
- •Теги для вставки изображений
- •Тег перехода к другому файлу
- •Тег перехода к другой web-странице
- •Теги подключения звука
- •Теги фреймов
- •Атрибуты фреймов
- •Создание таблиц в html
- •Рис*. Модель вычислений в облаке
- •«Облако» общего пользования
- •6.1. Основные проблемы безопасности «облачной» инфраструктуры
- •6.2. Средства защиты в виртуальных средах
- •6.3. Обеспечение безопасности «облачных» сред на базе пакета Trend Mforo Deep Security
- •6.4. Выбор провайдеров облачных
- •6.5.Будущее «облачной» безопасности
- •6.6. Особенности «облачной» антивирусной технологии
- •07. Медицина;
- •07. Медицина
- •07. Образование Сервис предназначен для учителей, учеников, родителей, сотрудников районных и региональных ведомств и сотрудников администрации образовательных учреждений.
- •07. Жкх
- •Сервисы для органов государственной власти
- •Координация управления силами и средствами реагирования
- •Подсистема мониторинга природных объектов
- •Бухгалтерия
- •Управление взаимоотношениями с клиентами
- •07. Док
- •Функции сервиса:
- •07. Box
- •Функционал:
- •8.1. Анализ угроз корпоративных сетей
- •8.2. Тенденции развития ит-угроз
- •Лекция 9. Обеспечение информационной безопасности компьютерных систем. Пути решения информационной безопасности.
- •9.1. Криминализация атак на компьютерные сети и системы
- •Появление кибероружия для ведения технологических кибервойн
- •9.2. Политика информационной безопасности
07. Box
Развитие инновационных облачных сервисов требует новых инструментов для работы с ними. В компании «Ростелеком» была разработана уникальная, не имеющая аналогов в мире, all-in-one приставка «O7. BOX».
Установив такую приставку дома, человек может (конечно, если захочет) не вставать с дивана неделями. С помощью «07. Box» вы можете подавать документы на получение загранпаспорта и других госуслуг, контролировать энергопотребление в вашем доме, общаться в соцсетях прямо с телевизора, смотреть цифровые каналы и HD-видео и даже оплачивать счета. К приставке можно подключать клавиатуру, мышь и коммуникатор.
Функционал:
Телевидение
Трансляция цифрового телевидения по технологиям IPTV, ОТТ иDVB2 и записьпонравившихся передач. Просмотр HD-видео.
Интернет
Доступ к сервису электронной почты (07. Бизнес) с аутентификацией с помощью электронной подписи. Доступ в социальные сети.
Госуслуги
Доступ к Порталу государственных услуг с поддержкой Электронной цифровой подписи (карта Электронного правительства).
ЖКХ
Приставка интегрируется со счётчиками ресурсов, позволяя вести учёт расходования воды и электроэнергии.
Умный дом
Приставка интегрируется с системой «Умный дом», позволяя контролировать и регулировать работу всех систем дома через телевизор. С помощью приставки можно выводить на телевизор изображение с камер видеонаблюдения, установленных в доме и на придомовой территории.
Платежный терминал
Позволяет оплатить получение государственных и муниципальных услуг, услуг ЖКХ и других сервисов с помощью электронной карты.
Развлечения
С помощью приставки можно получить доступ к различным развлекательным и полезным сервисам, среди которых: гороскоп, погода, игры и многие другие.
Лекция 8. Основные понятия информационной безопасности и защиты информации
Анализ угроз корпоративных сетей. Проблемы безопасности IP – сетей. Угрозы уязвимости проводных сетей. Характерные особенности сетевых атак. Тенденции развития ИТ-угроз. Угрозы и уязвимости беспроводных сетей.
8.1. Анализ угроз корпоративных сетей
Анализ угроз сетевой безопасности.
Для организации коммуникаций в неоднородной сетевой среде применяется набор протоколов ТСР/IР, обеспечивающий совместимость между компьютерами разных типов. Совместимость - одно из основных преимуществ TCP/IP, поэтому большинство компьютерных сетей поддерживает эти протоколы. Кроме того, протоколы TCP/IP предоставляют доступ к ресурсам глобальной сети Интернет.
Благодаря своей популярности TCP/IP стал стандартом де-факто для межсетевого взаимодействия. Однако повсеместное распространение стека протоколов TCP/IP обнажило и его слабые стороны. Создавая свое детище, архитекторы стека TCP/IP не видели причин особенно беспокоиться о защите сетей, строящихся на его основе. Поэтому в спецификациях ранних версий протокола IP отсутствовали требования безопасности, что привело к изначальной уязвимости его реализации.
Проблемы безопасности IP-сетей
Стремительный рост популярности интернет-технологий сопровождается ростом серьезных угроз разглашения персональных данных, критически важных корпоративных ресурсов, государственных тайн и т.д.
Характерные особенности сетевых атак
Каждый день хакеры и другие злоумышленники подвергают угрозам сетевые информационные ресурсы, пытаясь получить к ним доступ с помощью специальных атак. Эти атаки становятся все более изощренными по воздействию и несложными в исполнении. Этому способствуют два основных фактора.
Во-первых, это повсеместное проникновение Интернета. Сегодня к этой сети подключены миллионы компьютеров. Многие миллионы компьютеров будутподключены к Интернету в ближайшем будущем, поэтому вероятность доступа хакеров к уязвимым компьютерам и компьютерным сетям постоянно возрастает. Кроме того, широкое распространение Интернета позволяет хакерам обмениваться информацией в глобальном масштабе.
Во-вторых, это всеобщее распространение простых в использовании операционных систем и сред разработки. Этот фактор резко снижает требования к уровню знаний злоумышленника. Раньше от хакера требовались хорошие знания и навыки программирования, чтобы создавать и распространять вредоносные программы. Теперь, для того чтобы получить доступ к хакерскому средству, нужно просто знать IP-адрес нужного сайта, а для проведения атаки достаточно щелкнуть мышкой.
Проблемы обеспечения информационной безопасности в корпоративных компьютерных сетях обусловлены угрозами безопасности для локальных рабочих станций, локальных сетей и атаками на корпоративные сети, имеющие выход в общедоступные сети передачи данных.
Сетевые атаки столь же разнообразны, как и системы, против которых они направлены. Некоторые атаки отличаются большой сложностью. Другие способен осуществить обычный оператор, даже не предполагающий, какие последствия может иметь его деятельность.
Нарушитель, осуществляя атаку, обычно ставит перед собой следующие цели:
нарушение конфиденциальности передаваемой информации;
нарушение целостности и достоверности передаваемой информации;
нарушение работоспособности системы в целом или отдельных ее частей.
С точки зрения безопасности распределенные системы характеризуются прежде всего наличием удаленных атак, поскольку компоненты распределенных систем обычно используют открытые каналы передачи данных и нарушитель может не только проводить пассивное прослушивание передаваемой информации, но и модифицировать передаваемый трафик (активное воздействие). И если активное воздействие на трафик может быть зафиксировано, то пассивное воздействие практически не поддается обнаружению. Но поскольку в ходе функционированияраспределенных систем обмен служебной информацией между компонентами системы осуществляется тоже по открытым каналам передачи данных, то служебная информация становится таким же объектом атаки, как и данные пользователя.
Трудность выявления факта проведения удаленной атаки выводит этот вид неправомерных действий на первое место по степени опасности, поскольку препятствует своевременному реагированию на осуществленную угрозу, в результате чего у нарушителя увеличиваются шансы успешной реализации атаки.
Безопасность локальной сети по сравнению с безопасностью межсетевого взаимодействия отличается тем, что в этом случае на первое по значимости место выходят нарушения зарегистрированных пользователей, поскольку в основном каналы передачи данных локальной сети находятся на контролируемой территории и защита от несанкционированного подключения к ним реализуется административными методами.
На практике IP-сети уязвимы для ряда способов несанкционированного вторжения в процесс обмена данными. По мере развития компьютерных и сетевых технологий (например, с появлением мобильных Java-приложений и элементов ActiveX) список возможных типов сетевых атак на IP-сети постоянно расширяется [Галицкий А.В., Рябко С.Д., Шаньгин В.Ф. Защита информации в сети – анализ технологий и синтез решений. М.: ДМК Пресс, 2004.].
Рассмотрим наиболее распространенные виды сетевых атак.
Подслушивание (sniffing). По большей части данные по компьютерным сетям передаются в незащищенном формате (открытым текстом), что позволяет злоумышленнику, получившему доступ к линиям передачи данных в вашей сети, подслушивать или считывать трафик. Для подслушивания в компьютерных сетях используют сниффер. Сниффер пакетов представляет собой прикладную программу, которая перехватывает все сетевые пакеты, передаваемые через определенный домен.
В настоящее время снифферы работают в сетях на вполне законном основании. Они используются для диагностики неисправностей и анализа трафика. Однако, ввиду того что некоторые сетевые приложения передают данные в текстовом формате (Telnet, FTP, SMTP, POP3 и т.д.), с помощью сниффера можно узнать полезную, а иногда и конфиденциальную информацию (например, имена пользователей и пароли).
Перехват пароля (password sniffing), передаваемого по сети в незашифрованной форме, путем «подслушивания» канала является разновидностью атаки подслушивания. Перехват имен и паролей создает большую опасность, так как пользователи часто применяют один и тот же логин и пароль для множества приложений и систем. Многие пользователи вообще имеют один пароль для доступа ко всем ресурсам и приложениям. Если приложение работает в режиме клиент/сервер, а аутентификационные данные передаются по сети в читаемом текстовом формате, эту информацию с большой вероятностью можно использовать для доступа к другим корпоративным или внешним ресурсам.
В самом худшем случае хакер получает доступ к пользовательскому ресурсу на системном уровне и с его помощью создает атрибуты нового пользователя, которые можно в любой момент использовать для доступа в сеть и к ее ресурсам.
Предотвратить угрозу сниффинга пакетов можно с помощью следующих мер и средств:
применение для аутентификации однократных паролей;
установка аппаратных или программных средств, распознающих снифферы;
применение криптографической защиты каналов связи.
Изменение данных. Злоумышленник, получивший возможность прочитать ваши данные, сможет сделать и следующий шаг - изменить их. Данные в пакете могут быть изменены, даже если злоумышленник ничего не знает ни об отправителе, ни о получателе. Даже если вы не нуждаетесь в строгой конфиденциальности всех передаваемых данных, наверняка вы не захотите, чтобы они были изменены по пути.
Анализ сетевого трафика. Целью атак подобного типа являются прослушивание каналов связи и анализ передаваемых данных и служебной информации с целью изучения топологии и архитектуры построения системы, получения критической пользовательской информации (например, паролей пользователей или номеров кредитных карт, передаваемых в открытом виде). Атакам данного типа подвержены такие протоколы, как FTP или Telnet, особенностью которых является то, что имя и пароль пользователя передаются в рамках этих протоколовв открытом виде.
Подмена доверенного субъекта. Большая часть сетей и операционных систем использует IP-адрес компьютера для того, чтобы определять, тот ли это адресат, который нужен. В некоторых случаях возможно некорректное присвоение IP-адреса (подмена IP-адреса отправителя другим адресом) - такой способ атаки называют фальсификацией адреса (IP-spoofing).
IP-спуфинг имеет место, когда злоумышленник, находящийся внутри корпорации или вне ее, выдает себя за законного пользователя. Злоумышленник может воспользоваться IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам. Злоумышленник может также использовать специальные программы, формирующие IP-пакеты таким образом, чтобы они выглядели как исходящие с разрешенных внутренних адресов корпоративной сети.
Атаки IP-спуфинга часто являются отправной точкой для других атак. Классическим примером является атака типа «отказ в обслуживании» (DoS), которая начинается с чужого адреса, скрывающего истинную личность хакера. Обычно IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами.
Угрозу спуфинга можно ослабить (но не устранить) с помощью следующих мер:
правильная настройка управления доступом из внешней сети;
пресечение попыток спуфинга чужих сетей пользователями своей сети.
Следует иметь в виду, что IP-спуфинг может быть осуществлен при условии проведения аутентификации пользователей на базе IP-адресов, поэтому введение дополнительных методов аутентификации пользователей (на основе одноразовых паролей или других методов криптографии) позволяет предотвратить атаки IP-спуфинга.
Посредничество. Атака типа «посредничество» подразумевает активное подслушивание, перехват и управление передаваемыми данными невидимым промежуточнымузлом. Когда компьютеры взаимодействуют на низких сетевых уровнях, они не всегда могут определить, с кем именно они обмениваются данными.
Посредничество в обмене незашифрованными ключами (атака Man-in-the-Middle). Для проведения атаки Man-in-the-Middle (человек в середине) злоумышленнику нужен доступ к пакетам, передаваемым по сети. Такой доступ ко всем пакетам, передаваемым от провайдера ISP в любую другую сеть, может, например, получить сотрудник этого провайдера. Для атак этого типа часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации.
В более общем случае атаки Man-in-the-Middle проводятся с целью кражи информации, перехвата текущей сессии и получения доступа к частным сетевым ресурсам, для анализа трафика и получения информации о сети и ее пользователях, для проведения атак типа DoS, искажения передаваемых данных и ввода несанкционированной информации в сетевые сессии.
Эффективно бороться с атаками типа Man-m-the-Middle можно только с помощью криптографии. Для противодействия атакам этого типа используется инфраструктура управления открытыми ключами PKI (Public Key Infrastructure).
Перехват сеанса (Session hijacking). По окончании начальной процедуры аутентификации соединение, установленное законным пользователем, например, с почтовым сервером, переключается злоумышленником на новый хост, а исходному серверу выдается команда разорвать соединение. В результате «собеседник» законного пользователя оказывается незаметно подмененным.
После получения доступа к сети у атакующего злоумышленника появляются большие возможности:
он может посылать некорректные данные приложениям и сетевым службам, что приводит к их аварийному завершению или неправильному функционированию;
он может также наводнить компьютер или всю сеть трафиком, пока не произойдет останов системы в связи с перегрузкой;
наконец, атакующий может блокировать трафик, что приведет к потере доступа авторизованных пользователей к сетевым ресурсам.
Отказ в обслуживании (Denial of Service, DoS). Эта атака отличается от атак других типов. Она не нацелена на получение доступа к вашей сети или на извлечение из этой сети какой-либо информации. Атака DoS делает сеть организации недоступной для обычного использования за счет превышения допустимых пределов функционирования сети, операционной системы или приложения. По существу, эта атака лишает обычных пользователей доступа к ресурсам или компьютерам сети организации.
Большинство атак DoS опирается на общие слабости системной архитектуры. В случае использования некоторых серверных приложений (таких, как Web-сервер или FTP-сервер) атаки DoS могут заключаться в том, чтобы занять все соединения, доступные для этих приложений, и держать их в занятом состоянии, не допуская
обслуживания обычных пользователей. В ходе атак DoS могут использоваться обычные Интернет - протоколы, такие как TCP и ICMP (Internet Control Message Protocol).
Атаки DoS трудно предотвратить, так как для этого требуется координация действий с провайдером. Если трафик, предназначенный для переполнения вашей сети, не остановить у провайдера, то на входе в сеть вы это сделать уже не сможете, потому что вся полоса пропускания будет занята.
Если атака этого типа проводится одновременно через множество устройств, мы говорим о распределенной атаке отказа в обслуживании DDoS (distributed DoS).
Простота реализации атак DoS и огромный вред, причиняемый ими организациям и пользователям, привлекают к этим атакам пристальное внимание администраторов сетевой безопасности.
Парольные атаки. Целью этих атак является завладение паролем и логином законного пользователя. Злоумышленники могут проводить парольные атаки, используя такие методы, как:
О подмена IP-адреса (1Р-спуфинг);
подслушивание (сниффинг);
простой перебор.
IP-спуфинг и сниффинг пакетов были рассмотрены выше. Эти методы позволяют завладеть паролем и логином пользователя, если они передаются открытым текстом по незащищенному каналу.
Часто хакеры пытаются подобрать пароль и логин, используя для этого многочисленные попытки доступа. Такой подход носит название атака полного перебора (brute force attack). Для этой атаки используется специальная программа, которая пытается получить доступ к ресурсу общего пользования (например, к серверу). Если в результате злоумышленнику удается подобрать пароль, он получает доступ к ресурсам на правах обычного пользователя. Если этот пользователь имеет значительные привилегии доступа, злоумышленник может создать для себя «проход» для будущего доступа, который будет действовать, даже если пользователь изменит свой пароль и логин.
Средства перехвата, подбора и взлома паролей в настоящее время считаются практически легальными и официально выпускаются достаточно большим числом компаний. Они позиционируются как программы для аудита безопасности и восстановления забытых паролей, и их можно на законных основаниях приобрести у разработчиков.
Парольных атак можно избежать, если не пользоваться паролями в текстовой форме. Использование одноразовых паролей и криптографической аутентификации могут практически свести на нет угрозу таких атак. К сожалению,не все приложения, хосты и устройства поддерживают указанные методы аутентификации.
При использовании обычных паролей необходимо придумать такой пароль, который было бы трудно подобрать. Минимальная длина пароля должна быть не менее восьми символов. Пароль должен включать символы верхнего регистра, цифры и специальные символы (#, $, &, % и т.д.).
Угадывание ключа. Криптографический ключ представляет собой код или число, необходимое для расшифровки защищенной информации. Хотя узнать ключ доступа тяжело и требуются большие затраты ресурсов, тем не менее это возможно. В частности, для определения значения ключа может быть использована специальная программа, реализующая метод полного перебора. Ключ, к которому получает доступ атакующий, называется скомпрометированным. Атакующий использует скомпрометированный ключ для получения доступа к защищенным передаваемым данным без ведома отправителя и получателя. Ключ дает возможность расшифровывать и изменять данные.
Атаки на уровне приложений. Эти атаки могут проводиться несколькими способами. Самый распространенный из них состоит в использовании известных слабостей серверного программного обеспечения (FTP, HTTP, Web-сервера).
Главная проблема с атаками на уровне приложений состоит в том, что они часто пользуются портами, которым разрешен проход через межсетевой экран.
Сведения об атаках на уровне приложений широко публикуются, чтобы дать возможность администраторам исправить проблему с помощью коррекционных модулей (патчей). К сожалению, многие хакеры также имеют доступ к этим сведениям, что позволяет им учиться.
Невозможно полностью исключить атаки на уровне приложений. Хакеры постоянно открывают и публикуют на своих сайтах в Интернете все новые уязвимые места прикладных программ.
Здесь важно осуществлять хорошее системное администрирование. Чтобы снизить уязвимость от атак этого типа, можно предпринять следующие меры:
анализировать log-файлы операционных систем и сетевые log-файлы с помощью специальных аналитических приложений;
отслеживать данные CERT о слабых местах прикладных программ;
пользоваться самыми свежими версиями операционных систем и приложений и самыми последними коррекционными модулями (патчами);
использовать системы распознавания атак IDS (Intrusion Detection Systems).
Сетевая разведка - это сбор информации о сети с помощью общедоступных данных и приложений. При подготовке атаки против какой-либо сети хакер, как правило, пытается получить о ней как можно больше информации.
Сетевая разведка проводится в форме запросов DNS, эхо-тестирования (ping sweep) и сканирования портов. Запросы DNS помогают понять, кто владеет тем или иным доменом и какие адреса этому домену присвоены. Эхо-тестирование адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной среде. Получив список хостов, хакер использует средства сканирования портов, чтобы составить полный список услуг, поддерживаемых этими хостами. В результате добывается информация, которую можно использовать для взлома.
Полностью избавиться от сетевой разведки невозможно. Если, к примеру, отключить эхоICMPи эхо-ответ на периферийных маршрутизаторах, вы избавитесь от эхо-тестирования, но потеряете данные, необходимые для диагностики сетевых сбоев. Кроме того, сканировать порты можно и без предварительного эхо-тестирования. Просто это займет больше времени, так как сканировать придется и несуществующие IP-адреса.
Системы IDS на уровне сети и хостов обычно хорошо справляются с задачей уведомления администратора о ведущейся сетевой разведке, что позволяет лучше подготовиться к предстоящей атаке и оповестить провайдера (ISP), в сети которого установлена система, проявляющая чрезмерное любопытство.
Злоупотребление доверием. Данный тип действий не является атакой в полном смысле этого слова. Он представляет собой злонамеренное использование отношений доверия, существующих в сети. Типичным примером такого злоупотребления является ситуация в периферийной части корпоративной сети. В этом сегменте обычно располагаются серверы DNS, SMTP и HTTP. Поскольку все они принадлежат к одному и тому же сегменту, взлом одного из них приводит к взлому и всех остальных, так как эти серверы доверяют другим системам своей сети.
Риск злоупотребления доверием можно снизить за счет более жесткого контроля уровней доверия в пределах своей сети. Системы, расположенные с внешней стороны межсетевого экрана, никогда не должны пользоваться абсолютным доверием со стороны систем, защищенных межсетевым экраном.
Отношения доверия должны ограничиваться определенными протоколами и по возможности аутентифицироваться не только по IP-адресам, но и по другим параметрам. Вредоносные программы. К таким программам относятся компьютерные вирусы,сетевые черви, программа «троянский конь».
Вирусы представляют собой вредоносные программы, которые внедряются в другие программы для выполнения определенной нежелательной функции на рабочей станции конечного пользователя. Вирус обычно разрабатывается злоумышленниками таким образом, чтобы как можно дольше оставаться необнаруженным в компьютерной системе. Начальный период «дремоты» вирусов является механизмом их выживания. Вирус проявляется в полной мере в конкретный момент времени, когда происходит некоторое событие вызова, например пятница 13-е, известная дата и т.п.
Разновидностью программы-вируса является сетевой червь, который распространяется по глобальной сети и не оставляет своей копии на магнитном носителе. Этот термин используется для именования программ, которые, подобно ленточным червям, перемещаются по компьютерной сети от одной системы к другой. Червь использует механизмы поддержки сети для определения узла, который может быть поражен. Затем с помощью этих же механизмов червь передает свое тело в этот узел и либо активизируется, либо ждет подходящих условий для активизации. Сетевые черви являются опасным видом вредоносных программ, так как объектом их атаки может стать любой из миллионов компьютеров, подключенных к глобальной сети Интернет. Для защиты от червя необходимо принять меры предосторожности против несанкционированного доступа к внутренней сети.
К компьютерным вирусам примыкают так называемые «троянские кони» (троянские программы). «Троянский конь» - это программа, которая имеет вид полезного приложении я, а на самом деле выполняет вредные функции (разрушение программного обеспечения, копирование и пересылка злоумышленнику файлов с конфиденциальными данными и т.п.). Опасность «троянского коня» заключается в дополнительном блоке команд, вставленном в исходную безвредную программу, которая затем предоставляется пользователям АС. Этот блок команд может срабатывать при наступлении какого-либо условия (даты, состояния системы) либо по команде извне. Пользователь, запустивший такую программу, подвергает опасности как своифайлы, так и всю АС в целом.
Согласно данным обзора угроз информационной безопасности Sophos Security Threat Management Report в первой половине 2006 года число распространяемых «троянских» программ превысило количество вирусов и червей в четыре раза, по сравнению с двукратным перевесом за первые шесть месяцев 2005.Sophosтакже сообщает о появлении нового вида «троянских» программ, получившего название ransomware. Такие программы похищают данные с зараженных компьютеров, а затем пользователю предлагается заплатить за них определенный выкуп.
Рабочие станции конечных пользователей очень уязвимы для вирусов, сетевых червей и «троянских коней».
Особенностью современных вредоносных программ является их ориентация на конкретное прикладное ПО, ставшее стандартом де-факто для большинства пользователей, в первую очередь это Microsoft Internet Explorer и Microsoft Outlook. Массовое создание вирусов под продукты Microsoft объясняется не только низким уровнем безопасности и надежности программ, важную роль играет глобальное распространение этих продуктов. Авторы вредоносного программного обеспечения все активнее начинают исследовать «дыры» в популярных СУБД, связующих ПО и корпоративные бизнес-приложения, построенные на базе этих систем.
Вирусы, черви и «троянские» программы постоянно эволюционируют, основной тенденцией их развития является полиморфизм. Сегодня уже довольно сложно провести границу между вирусом, червем и «троянской» программой, они используют практически одни и те же механизмы, небольшая разница заключается лишь в степени этого использования. Устройство вредоносного программного обеспечения стало сегодня настолько унифицированными, что, например, отличить почтовый вирус от червя с деструктивными функциями практически невозможно. Даже в «троянских» программах появилась функция репликации (как одно из средств противодействия антивирусным средствам), так что при желании их вполне можно назвать вирусами (с механизмом распространения в виде маскировки под прикладные программы).
Для защиты от указанных вредоносных программ необходимо применение ряда мер:
исключение несанкционированного доступа к исполняемым файлам;
тестирование приобретаемых программных средств;
контроль целостности исполняемых файлов и системных областей;
создание замкнутой среды исполнения программ.
Борьба с вирусами, червями и «троянскими конями» ведется с помощью эффективного антивирусного программного обеспечения, работающего на пользовательском уровне и, возможно, на уровне сети. По мере появления новых вирусов, червей и «троянских коней» нужно устанавливать новые базы данных антивирусных средств и приложений.
Спам и фишинг относятся к непрограммным угрозам. Распространенность этих двух угроз в последнее время значительно выросла.
Спам, объем которого сейчас превышает 80% от общего объема почтового трафика, может создавать угрозу доступности информации, блокируя почтовые серверы, либо использоваться для распространения вредоносного программного обеспечения.
Фишинг (phishing) является относительно новым видом интернет-мошенничества, цель которого - получить идентификационные данные пользователей. Сюда относятся кражи паролей, номеров кредитных карт, банковских счетов, PIN-кодов и другой конфиденциальной информации, дающей доступ к деньгам пользователя. Фишинг использует не технические недостатки программного обеспечения, а легковерность пользователей Интернета. Сам термин phishing, созвучный с fishing (рыбная ловля), расшифровывается как password harvesting fishing - выуживание пароля. Действительно, фишинг очень похож на рыбную ловлю. Злоумышленник закидывает в Интернет приманку и «вылавливает всех рыбок» - пользователей Интернета, которые клюнут на эту приманку.
Злоумышленником создается практически точная копия сайта выбранного банка (электронной платежной системы, аукциона и т.п.). Затем при помощи спам-технологии по электронной почте рассылается письмо, составленное таким образом, чтобы быть максимально похожим на настоящее письмо от выбранного банка. При составлении письма используются логотипы банка, имена и фамилии реальных руководителей банка. В таком письме, как правило, сообщается о том, что из-за смены программного обеспечения в системе интернет-банкинга пользователю необходимо подтвердить или изменить свои учетные данные. В качестве причины для изменения данных может быть назван выход из строя ПО банка или же нападение хакеров. Наличие правдоподобной легенды, побуждающей пользователя к необходимым действиям, - непременная составляющая успеха мошенников-фишеров. Во всех случаях цель таких писем одна - заставить пользователя нажать на приведенную ссылку, а затем ввести свои конфиденциальные данные (пароли, номера счетов, PIN-коды) наложном сайте банка (электронной платежной системы, аукциона). Зайдя на ложный сайт, пользователь вводит в соответствующие строки свои конфиденциальные данные, а далее аферисты получают доступ в лучшем случае к его почтовому ящику, в худшем - к электронному счету.
Технологии фишеров совершенствуются, применяются методы социальной инженерии. Клиента пытаются напугать, придумать критичную причину для того, чтобы он выдал свои конфиденциальные данные. Как правило, сообщения содержат угрозы, например заблокировать счет в случае невыполнения получателем требований, изложенных в сообщении.
Появилось сопряженное с фишингом понятие - фарминг. Это тоже мошенничество, ставящее целью получить персональные данные пользователей, но не через почту, а прямо через официальные Web-сайты. Фармеры заменяют на серверах DNS цифровые адреса легитимных Web-сайтов на адреса поддельных, в результате чего пользователи перенаправляются на сайты мошенников. Этот вид мошенничества еще опаснее, так как заметить подделку практически невозможно.
В настоящее время мошенники часто используют «троянские» программы. Задача фишера в этом случае сильно упрощается - достаточно заставить пользователя перебраться на фишерский сайт и «подцепить» программу, которая самостоятельно разыщет на жестком диске жертвы все, что нужно. Наравне с «троянскими» программами стали использоваться и кейлоггеры. На подставных сайтах на компьютеры жертв загружают шпионские утилиты, отслеживающие нажатия клавиш. При использовании такого подхода необязательно находить выходы на клиентов конкретного банка или компании, а потому фишеры стали подделывать и сайты общего назначения, такие как новостные ленты и поисковые системы.
Успеху фишинг-афер способствует низкий уровень осведомленности пользователей о правилах работы компаний, от имени которых действуют преступники. В частности, около 5% пользователей не знают простого факта: банки не рассылают писем с просьбой подтвердить в онлайне номер своей кредитной карты и ее PIN-код.
По данным аналитиков (www.cnews.ru), ущерб, нанесенный фишерами мировой экономике, составил в 2003 году 14 млрд долларов, а год спустя он достиг 44 млрд долларов. По статистике Symantec, в середине 2004 года фильтры компании еженедельно блокировали до 9 млн писем с фишинговым контентом. К концу года за тот же период отсеивалось уже 33 млн.
Основной защитой от фишинга пока остаются спам-фильтры. К сожалению, программный инструментарий для защиты от фишинга обладает ограниченной эффективностью, поскольку злоумышленники эксплуатируют в первую очередь не бреши в ПО, а человеческую психологию. Активно разрабатываются технические средства безопасности, прежде всего плагины для популярных браузеров. Суть защиты заключается в блокировании сайтов, попавших в «черные списки» мошеннических ресурсов. Следующим шагом могут стать системы генерации одноразовых паролей для интернет-доступа к банковским счетам и аккаунтам в платежных системах, повсеместное распространение дополнительных уровней защиты за счет комбинации ввода пароля с использованием аппаратного USB-ключа.
Перечисленные атаки на IP-сети возможны в силу ряда причин:
использование общедоступных каналов передачи данных. Важнейшие данные передаются по сети в незашифрованном виде;
уязвимости в процедурах идентификации, реализованных в стеке TCP/IP. Идентифицирующая информация на уровне IP передается в открытом виде;
отсутствие в базовой версии стека протоколов TCP/IP механизмов, обеспечивающих конфиденциальность и целостность передаваемых сообщений;
аутентификация отправителя осуществляется по его IP-адресу. Процедура аутентификации выполняется только на стадии установления соединения, а в дальнейшем подлинность принимаемых пакетов не проверяется;
отсутствие возможности контроля за маршрутом прохождения сообщений в сети Интернет, что делает удаленные сетевые атаки практически безнаказанными.
Угрозы и уязвимости проводных корпоративных сетей
На начальном этапе развития сетевых технологий ущерб от вирусных и других типов компьютерных атак был незначителен вследствие того, что зависимость мировой экономики от информационных технологий была довольно мала. В настоящее время в условиях постоянно растущего числа атак и значительной зависимости бизнеса от электронных средств доступа и обмена информацией ущерб даже от самых незначительных атак, приводящих к потерям машинного времени, исчисляется миллионами долларов, а совокупный годовой ущерб мировой экономике составляет десятки миллиардов долларов [10].
Информация, обрабатываемая в корпоративных сетях, является особенно уязвимой. Существенному повышению возможности несанкционированного использования или модификации информации, введению в оборот ложной информации в настоящее время способствуют:
увеличение объемов обрабатываемой, передаваемой и хранимой в компьютерах информации;
сосредоточение в базах данных информации различного уровня важности и конфиденциальности;
расширение доступа круга пользователей к информации, хранящейся в базах
данных, и к ресурсам вычислительной сети;
увеличение числа удаленных рабочих мест;
широкое использование для связи пользователей глобальной сети Интернет и различных каналов связи;
автоматизация обмена информацией между компьютерами пользователей.
Проанализируем наиболее распространенные угрозы, которым подвержены современные проводные корпоративные сети. Источники угроз могут изменяться от неавторизованных вторжений злоумышленников до компьютерных вирусов, при этом весьма существенной угрозой безопасности являются человеческие ошибки. Необходимо учитывать, что источники угроз безопасности могут находиться как внутри корпоративной информационной системы - внутренние источники, - так и вне ее - внешние источники. Такое деление вполне оправдано потому, что для одной и той же угрозы (например, кражи) методы противодействия для внешних и внутренних источников будут разными. Знание возможных угроз, а также уязвимых мест корпоративной информационной системы необходимо для того, чтобы выбирать наиболее эффективные средства обеспечения безопасности.
Самыми частыми и опасными (с точки зрения размера ущерба) являются непреднамеренные ошибки пользователей, операторов и системных администраторов,обслуживающих корпоративные информационные системы. Иногда такие ошибки приводят к прямому ущербу (неправильно введенные данные, ошибка в программе, вызвавшая остановку или разрушение системы). Иногда они создают слабые места, которыми могут воспользоваться злоумышленники (таковы обычно ошибки администрирования) [40].
Согласно данным Национального института стандартов и технологий США (NIST)55% случаев нарушения безопасности ИС - следствие непреднамеренных ошибок. Работа в глобальной информационной сети делает этот фактор достаточно актуальным, причем источником ущерба могут быть действия как пользователей организации, так и пользователей глобальной сети, что особенно опасно. На рис. приведена круговая диаграмма, иллюстрирующая статистические данные по источникам нарушений безопасности в корпоративной информационной системе.
На втором месте по размерам ущерба располагаются кражи и подлоги. В большинстве расследованных случаев виновниками оказывались штатные сотрудники организаций, отлично знакомые с режимом работы и защитными мерами. Наличие мощного информационного канала связи с глобальными сетями при отсутствии должного контроля за его работой может дополнительно способствовать такой деятельности.
Обиженные сотрудники, даже бывшие, знакомы с порядками в организации и способны вредить весьма эффективно. Необходимо следить за тем, чтобы при увольнении сотрудника его права доступа к информационным ресурсам аннулировались.
Преднамеренные попытки получения несанкционированного доступа через внешние коммуникации занимают в настоящее время около 10% всех возможных нарушений.
Источники нарушений безопасности:
Ошибки пользователей и персонала – 55%;
Проблемы физической безопасности – 15%;
Атаки извне – 10%;
Нечестные сотрудники – 10%;
Обиженные сотрудники – 6%;
Вирусы – 4%.
Хотя эта величина кажется не столь значительной, опыт работы в Интернете показывает, что почти каждый интернет-сервер по нескольку раз в день подвергается попыткам проникновения. Тесты Агентства защиты информационных систем США показали, что 88% компьютеров имеют слабые места с точки зрения информационной безопасности, которые могут активно использоваться для получения несанкционированного доступа. Отдельно следует рассматривать случаи удаленного доступа к информационным структурам организаций.
Еще до построения политики безопасности необходимо оценить риски, которым подвергается компьютерная среда организации, и предпринять соответствующие действия. Очевидно, что затраты организации на контроль и предотвращение угроз безопасности не должны превышать ожидаемых потерь в случае, если никакие действия по защите активов и ресурсов организации не принимаются вовсе.
Приведенные статистические данные могут подсказать администрации и персоналу организации, куда следует направить усилия для эффективного снижения угроз безопасности корпоративной сети и системы. Конечно, нужно заниматься проблемами физической безопасности и мерами по снижению негативного воздействия на безопасность ошибок человека, но в то же время необходимо уделить самое серьезное внимание решению задач сетевой безопасности по предотвращению атак на корпоративную сеть и систему как извне, так и изнутри системы.
. Угрозы и уязвимости беспроводных сетей
При построении беспроводных сетей одной из наиболее острых проблем является обеспечение их безопасности. Если в обычных сетях информация передается по проводам, то радиоволны, используемые для беспроводных решений, достаточно легко перехватить при наличии соответствующего оборудования. Принцип действия беспроводной сети приводит к возникновению большого количества возможных уязвимостей для атак и проникновений.
Оборудование беспроводных локальных сетей WLAN (Wireless Local Area Network) включает в себя точки беспроводного доступа и рабочие станции для каждого абонента.
Точки доступа АР (Access Point) выполняют роль концентраторов, обеспечивающих связь между абонентами и между собой, а также функцию мостов, осуществляющих связь с кабельной локальной сетью и с Интернетом. Каждая точка доступа может обслуживать несколько абонентов. Несколько близкорасположенных точек доступа образуют зону доступаWi-Fi, в пределах которой все абоненты, снабженные беспроводными адаптерами, получают доступ к сети. Такие зоны доступа создаются в местах массового скопления людей: в аэропортах, студенческих городках, библиотеках, магазинах, бизнес-центрах и т.д.
У точки доступа есть идентификатор набора сервисов SSID(ServiceSetIdentifier).SSID - это 32-битовая строка, используемая в качестве имени беспроводной сети, с которой ассоциируются все узлы. Идентификатор SSID необходим для подключения рабочей станции к сети. Чтобы связать рабочую станцию с точкой доступа, обе системы должны иметь один и тот же SSID. Если рабочая станция не имеет нужного SSID, то она не сможет связаться с точкой доступа и соединиться с сетью.
Главное отличие между проводными и беспроводными сетями связано с наличием неконтролируемой области между конечными точками беспроводной сети. Это позволяет атакующим, находящимся в непосредственной близости от беспроводных структур, производить целый ряд нападений, которые невозможны в проводном мире.
При использовании беспроводного доступа к локальной сети угрозы безопасности существенно возрастают (рис. ).
Перечислим основные уязвимости и угрозы беспроводных сетей.
Точка доступа
Рис. . Угрозы при беспроводном доступе к локальной сети
Вещание радиомаяка. Точка доступа включает с определенной частотой широковещательный радиомаяк, чтобы оповещать окрестные беспроводные узлы о своем присутствии. Эти широковещательные сигналы содержат основную информацию о точке беспроводного доступа, включая, как правило, SSID, и приглашают зарегистрироваться беспроводные узлы в данной области. Любая рабочая станция, находящаяся в режиме ожидания, может получить SSID и добавить себя в соответствующую сеть. Вещание радиомаяка является врожденной патологией беспроводных сетей. Многие модели позволяют отключать содержащую SSID часть этого вещания, чтобы несколько затруднить беспроводное подслушивание, но SSID тем не менее посылается при подключении, поэтому все равно существует небольшое окно уязвимости.
Обнаружение WLAN. Для обнаружения беспроводных сетей WLAN используется, например, утилита NetStumber совместно со спутниковым навигатором глобальной системы позиционирования GPS. Данная утилита идентифицирует SSID сети WLAN, а также определяет, используется ли в ней система шифрования WEP. Применение внешней антенны на портативном компьютере делает возможным обнаружение сетей WLAN во время обхода нужного района или поездки по городу. Надежным методом обнаружения WLAN является обследование офисного здания с переносным компьютером в руках.
Подслушивание. Подслушивание ведут для сбора информации о сети, которую предполагается атаковать впоследствии. Перехватчик может использовать добытые данные для того, чтобы получить доступ к сетевым ресурсам. Оборудование, используемое для подслушивания в сети, может быть не сложнее того, которое используется для обычного доступа к этой сети. Беспроводные сети по своей природе позволяют соединять с физической сетью компьютеры, находящиеся на некотором расстоянии от нее, как если бы эти компьютеры находились непосредственно в сети. Это позволяет подключиться к беспроводной сети, располагающейся в здании, человеку, сидящему в машине на стоянке рядом с ним. Атаку посредством пассивного прослушивания практически невозможно обнаружить.
Ложные точки доступа в сеть. Опытный атакующий может организовать ложную точку доступа с имитацией сетевых ресурсов. Абоненты, ничего не подозревая, обращаются к этой ложной точке доступа и сообщают ей свои важные реквизиты, например аутентификационную информацию. Этот тип атак иногда применяют в сочетании с прямым глушением, чтобы «заглушить» истинную точку доступа в сеть.
Отказ в обслуживании. Полную парализацию сети может вызвать атака типа «отказ в обслуживании» DoS (Denial of Service). Цель любой атаки отказа в обслуживании состоит в создании помехи при доступе пользователя к сетевым ресурсам. Беспроводные системы особенно восприимчивы к таким атакам. Физический уровень в беспроводной сети - абстрактное пространство вокруг точки доступа. Злоумышленник может включить устройство, заполняющее весь спектр на рабочей частоте помехами и нелегальным трафиком, - такая задача не вызывает особых трудностей. Сам факт проведения DoS-атаки на физическом уровне в беспроводной сети трудно доказать.
Атаки типа «человек в середине». Атаки типа MITM (Man-in-the-Middle - человек в середине) выполняются на беспроводных сетях гораздо проще, чем на проводных, так как в случае проводной сети к ней требуется реализовать определенный вид доступа. Обычно атаки «человек в середине» используются для разрушения конфиденциальности и целостности сеанса связи. Атаки MITM более сложны, чем большинство других атак: для их проведения требуется подробная информация о сети. Злоумышленник обычно подменяет идентификацию одного из сетевых ресурсов. Злоумышленник использует возможность прослушивания и нелегального захвата потока данных с целью изменения его содержимого, необходимого для удовлетворения некоторых своих целей, например для спуфинга IP-адресов, изменения МАС-адреса для имитирования другого хоста и т.д.
Анонимный доступ в Интернет. Незащищенные беспроводные ЛВС обеспечивают хакерам наилучший анонимный доступ для атак через Интернет. Хакеры могут использовать незащищенную беспроводную ЛВС организации для выхода через нее в Интернет, где они будут осуществлять противоправные действия, не оставляя при этом своих следов. Организация с незащищенной ЛВС формально становится источником атакующего трафика, нацеленного на другую компьютерную систему, что связано с потенциальным риском правовой ответственности за причиненный ущерб жертве атаки хакеров.
Кроме описанных выше атак существуют и другие, используемые хакерами для взлома беспроводных сетей.