Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТчет.docx
Скачиваний:
117
Добавлен:
25.02.2016
Размер:
460.55 Кб
Скачать

1.2 Назначение и общая характеристика устройства

Усилитель звуковой частоты повышенной мощности - прибор (электронный усилитель) для усиления электрических колебаний, соответствующих слышимому человеком звуковому диапазону частот, таким образом к данным усилителям предъявляется требование усиления в диапазоне частот от 20 до 20 000 Гц по уровню −3 дБ, лучшие образцы УЗЧ имеют диапазон от 0 Гц до 200 кГц, простейшие УЗЧ имеют более узкий диапазон воспроизводимых частот. Может быть выполнен в виде самостоятельного устройства, или использоваться в составе более сложных устройств. Само же устройство является аудио аппаратурой для домашнего пользования Hi-Fi класса. Усилитель может быть использован совместно с аудиомагнитофоном, телевизором, компьютером или другим источником звука, нуждающегося в усилении сигнала для прослушивания аудио программ.

Усилитель звуковых частот обычно состоит из предварительного усилителя и усилителя мощности (УМ). Предварительный усилитель предназначен для повышения мощности и напряжения и доведения их до величин, нужных для работы оконечного усилителя мощности, зачастую включает в себя регуляторы громкости, тембра или эквалайзер, иногда может быть конструктивно выполнен как отдельное устройство. Усилитель мощности должен отдавать в цепь нагрузки (потребителя) заданную мощность электрических колебаний. Его нагрузкой могут являться излучатели звука: акустические системы(колонки), наушники, радиотрансляционная сеть или модулятор радиопередатчика.

1.3 Требования по устойчивости к внешним воздействиям

Климатическое исполнение УХЛ 4.2. Проектируемое устройство относится к группе 4 - эксплуатация в помещениях с искусственно регулируемыми климатическими условиями, например, в закрытых отапливаемых или охлаждаемых вентилируемых производственных и других, в т.ч. хорошо вентилируемых подземных помещениях (отсутствие воздействия прямого солнечного излучения, атмосферных осадков, ветра, песка и пыли наружного воздуха, отсутствие или существенное уменьшение воздействия рассеянного солнечного излучения и конденсации влаги) [8]. В соответствии с ГОСТ 1478-88 устройство должно отвечать следующим параметрам:

  • температура………………………………………………………...……10…35С;

  • относительная влажность…………………………………………………...60 %;

  • при температуре………………………………………………………………20С;

  • атмосферное давление…………………..84 – 86,6 кПа (630 – 650 мм рт.ст.).

2 Анализ схемы электрической принципиальной

Аудио сигнал поступает на вход эквалайзера. Эквалайзер состоит из двух основных компонентов: микросхемы и шести полосовых фильтров, состоящих из двух конденсаторов и одного резистора, которым, собственно и регулируется усиление или ослабление выбранной частоты. При выбранных конденсаторах регулируются следующие полосы: 30 Гц, 330 Гц, 1 кГц, 3,3 кГц и 10 кГц.

Микросхема обрабатывает и усиливает сигнал по двум каналам, что избавляет от необходимости включения аналогичной схемы для обработки стерео сигнала.

Далее обработанный сигнал поступает на вход предусилителя. Он выполнен на микросхеме AN5836. В предусилителе предусмотрена регулировка уровня громкости и баланса, а также регулировка тембра по низкой и высокой частотам. Схема эквалайзера и предусилителя прекрасно согласуются между собой, т.к. входной сигнал на предусилитель не должен превышать 500 мВ [29].

После предусилителя обработанный и усиленный сигнал поступает на вход двух усилителей, которые усиливают сигнал каждого канала.

Входная цепочка каждого усилителя (R1C1) представляет собой фильтр нижних частот (ФНЧ), обрезающий все выше 90 кГц. Без него нельзя - ХХI век - это в первую очередь век высокочастотных помех. Частота среза этого фильтра довольно высока. Но это специально - я ведь не знаю, к чему будет подключаться этот усилитель. Если на входе поставить регулятор громкости в виде переменного резистора, то в самый раз - его сопротивление добавится к R1, и частота среза снизится (оптимальное значение сопротивления регулятора громкости ~10 кОм, больше - лучше, но нарушится закон регулирования).

Далее цепочка R2C2 выполняет прямо противоположную функцию - не пропускает на вход частоты ниже 7 Гц. Если это окажется слишком низко, емкость С2 можно уменьшить. Если сильно увлечься снижением емкости, можно остаться совсем без низкой частоты. Для полного звукового диапазона С2 должно быть не менее 0,33 мкф. Стоит помнить, что у конденсаторов разброс емкостей довольно большой, поэтому если написано 0,47 мкф, то запросто может оказаться, что там 0,3. На нижней границе диапазона выходная мощность снижается в 2 раза, поэтому ее лучше выбирать пониже [17]:

С2 = 1000 / (6,28 * Fmin * R2) (2.1)

где С2 – емкость конденсатора, мкФ;

Fmin – минимальная частота, Гц;

R2 – сопротивление резистора, кОм.

Резистор R2 задает входное сопротивление усилителя. Его величина несколько больше, чем по документации производителя, но это и лучше - слишком низкое входное сопротивление может "не понравиться" источнику сигнала. Также следует учесть тот факт, что если перед усилителем включен регулятор громкости, то его сопротивление должно быть раза в 4 меньше, чем R2, иначе изменится закон регулирования громкости (величина громкости от угла поворота регулятора). Оптимальное значение R2 лежит в диапазоне 33...68 кОм (большее сопротивление снизит помехоустойчивость) [6].

Схема включения усилителя - неинвертирующая. Резисторы R3 и R4 создают цепь отрицательной обратной связи (ООС). Коэффициент усиления равен:

Ку = R4 / R3 + 1 (2.2)

Полученное значение в 29 дБ близко к оптимальному значению 30 дБ. Менять коэффициент усиления можно, изменяя резистор R3. Учитываем то, что делать Ку меньше 20 нельзя - микросхема может самовозбуждаться. Больше 60 его также делать не стоит - глубина ООС уменьшится, а искажения возрастут. При значениях сопротивлений, указанных на схеме, при входном напряжении 0,5 вольт выходная мощность на нагрузке 4 ома равна 75 Вт. Если чувствительности усилителя не хватает, то лучше использовать предварительный усилитель.

Значения сопротивлений несколько больше, чем рекомендовано производителем. Это во-первых, увеличивает входное сопротивление, что благоприятно для источника сигнала (для получения максимального баланса по постоянному току нужно чтобы R4 было равно R2). Во-вторых, улучшает условия работы электролитического конденсатора С3. И в-третьих, усиливает благотворное влияние конденсатора С4. Об этом поподробнее. Конденсатор С3 последовательно с R3 создает 100%-ю ООС по постоянному току (так как сопротивление постоянному току у него бесконечность, и Ку получается равным единице). Чтобы влияние С3 на усиление низких частот было минимально, его емкость должна быть довольно большой. Частота, на которой влияние С3 становится заметной равна:

f = 1000 / (6,28 * R3 * С3) (2.3)

Эта частота и должна быть очень низкая (после расчета по формуле получилась равной 1,3 Гц). Дело в том, что С3 - электролитический полярный, а на него подается переменное напряжение и ток, что для него очень плохо. Поэтому чем меньше значение этого напряжения, тем меньше искажения, вносимые С3. С этой же целью его максимально допустимое напряжение выбирается довольно большим (50В), хотя напряжение на нем не превышает 100 милливольт. Очень важно, чтобы частота среза цепи R3С3 была намного ниже, чем входной цепи R2С2. Ведь когда проявляется влияние С3 из-за роста его сопротивления, то и напряжение на нем увеличивается (выходное напряжение усилителя перераспределяется между R4, R3 и С3 пропорционально их сопротивлениям). Если же на этих частотах выходное напряжение падает (из-за падения входного напряжения), то и напряжение на С3 не растет. В принципе, в качестве С3 можно использовать неполярный конденсатор, но не нельзя однозначно сказать улучшится от этого звук, или ухудшится: неполярный конденсатор это "два в одном" полярных, включенных встречно.

Конденсатор С4 шунтирует С3 на высоких частотах: у электролитов есть еще один недостаток (на самом деле недостатков много, это расплата за высокую удельную емкость) - они плохо работают на частотах выше 5-7 кГц (дорогие лучше, например Black Gate, с достаточно высокой ценой за штуку неплохо работают и на 20 кГц). Пленочный конденсатор С4 "берет высокие частоты на себя", тем самым снижая искажения, вносимые на них конденсатором С3. Чем больше емкость С4 - тем лучше. А его максимальное рабочее напряжение может быть сравнительно небольшим.

Цепь С7R9 увеличивает устойчивость усилителя. В принципе усилитель очень устойчив, и без нее можно обойтись, но попадаются и экземпляры микросхем, которые без этой цепи работают намного хуже. Конденсатор С7 должен быть рассчитан на напряжение не ниже, чем напряжение питания.

Конденсаторы С8 и С9 осуществляют так называемую вольтодобавку. Через них часть выходного напряжения поступает обратно в предоконечный каскад и складывается с напряжением питания. В результате напряжение питания внутри микросхемы оказывается выше, чем напряжение источника питания. Это нужно потому, что выходные транзисторы обеспечивают выходное напряжение на 5 вольт меньше, чем напряжение на их входах. Таким образом, чтобы получить на выходе 25 вольт, нужно подать на затворы транзисторов напряжение 30 вольт, а где его взять? Вот и берем его с выхода. Без цепи вольтодобавки выходное напряжение микросхемы было бы на 10 вольт меньше, чем напряжение питания, а с этой цепью всего на 2-4. Пленочный конденсатор С9 берет работу на себя на высоких частотах, где С8 работает хуже. Оба конденсатора должны выдерживать напряжение не ниже, чем 1,5 напряжения питания.

Резисторы R5-R8, конденсаторы С5, С6 и диод D1 управляют режимами Mute и StdBy при включении и выключении питания. Они обеспечивают правильную последовательность включения/выключения этих режимов. Правда все отлично работает и при "неправильной" их последовательности, так что такое управление нужно больше для собственного удовольствия.

Конденсаторы С10-С13 фильтруют питание. Их использование обязательно - даже с самым наилучшим источником питания сопротивления и индуктивности соединительных проводов могут повлиять на работу усилителя. При наличии этих конденсаторов никакие провода не страшны (в разумных пределах). Уменьшать емкости не стоит. Минимум 470 мкФ для электролитов и 1 мкФ для пленочных. При установке на плату необходимо, чтобы выводы были максимально короткими и хорошо пропаяны. Все эти конденсаторы должны выдерживать напряжение не ниже, чем 1,5 раза напряжения питания.

И, наконец, резистор R10. Он служит для разделения входной и выходной земли. Его назначение можно объяснить так. С выхода усилителя через нагрузку на землю протекает большой ток. Может так случиться, что этот ток, протекая по "земляному" проводнику, протечет и через тот участок, по которому течет входной ток (от источника сигнала, через вход усилителя, и далее обратно к источнику по "земле"). Если бы сопротивление проводников было нулевым, то и ничего страшного. Но сопротивление хоть и маленькое, но не нулевое, поэтому на сопротивлении "земляного" провода будет появляться напряжение (закон Ома: U=I*R), которое сложится со входным. Таким образом выходной сигнал усилителя попадет на вход, причем эта обратная связь ничего хорошего не принесет. Сопротивление резистора R10 хоть и мало (оптимальное значение 1...5 Ом), но намного больше, чем сопротивление земляного проводника, и через него (резистор) во входную цепь попадет в сотни раз меньший ток, чем без него.

Рисунок 2.1 – Структура микросхемы 7294

Режимы Mute и StandBy в микросхеме позволяют отключать звук и переводить микросхему в "спящий" режим с пониженным энергопотреблением.

Если включен режим Mute, то входная цепь микросхемы отключается от вывода 3 (рисунок 2.1) и соединяется с землей (точнее с выводом 4, который должен быть заземлен). Сигнал на выход практически не поступает (по паспорту он ослабляется на 80 дБ = 10 000 раз). Применение - для временного глушения звука (как в телевизоре), и для устранения переходных процессов (щелчков) при включении-выключении [30; 17; 33].

Если включен режим StandBy, то микросхема переходит в "спящий" режим с пониженным энергопотреблением. При этом происходит следующее: включается режим Mute и кроме того, некоторые из транзисторов микросхемы (в том числе выходные) запираются и практически перестают потреблять ток от источника питания. По паспорту сигнал ослабляется на 90 дБ, а потребляемый микросхемой ток снижается до 1 мА. Применение этому режиму разное:

  • в устройствах с батарейным питанием как выключатель питания (чтобы не ставить сдвоеный выключатель - и на "плюс" и на "минус" питания);

  • для электронного внешнего управления включением-выключением, чтобы не нужно было большие токи/напряжения питания пропускать через управляющее устройство (и нет необходимости использовать для включения питания реле). Например, в сабвуфере, который должен включаться входным сигналом;

  • при использовании этого режима, включение происходит очень быстро, гораздо быстрее, чем при включении питания, если включать сетевым (220 В) выключателем, когда должен заработать трансформатор и зарядиться конденсаторы фильтра. Только емкость конденсатора (рисунок 2.2) нужно брать не более 10 мкФ, иначе задержка включения будет большой. Аналогию можно найти в некоторых бытовых приборах (телевизорах, мониторах, ресиверах), которые из дежурного режима (с помощью пульта ДУ) включаются быстрее, чем при включении сетевым выключателем.

Во всех этих случаях имеется ввиду, что левый конец резистора (рисунок 2.2) подключается или к плюсу питания (микросхема включена), или к земле (микросхема выключена).

Для управления этими режимами служат выводы 10 (Mute) и 9 (Stand-by). Если напряжение на соответствующем выводе меньше, чем 1,5 В относительно земли (на самом деле относительно вывода 1, соединенного с землей), то режим включен - микросхема молчит, или вообще отключена. Если напряжение больше 3,5 В, то режим отключен. То есть, микросхема работает, когда напряжение и на выводе 9 и на выводе 10 больше 3,5 В. Такие уровни позволяют управлять усилителем от обычных цифровых микросхем.

Рисунок 2.2 – Простейший способ управления включением

Если нет необходимости управлять включением микросхемы или приглушением звука, то выводы рекомендуется использовать для устранения щелчка при включении. Самый простой способ показан на рисунке 2.2 - выводы объединяются и подключаются к источнику через резистор и конденсатор. Такое включение задает задержку подачи напряжения на выводы, и в результате микросхема включается на ~ 0,1 секунды после подачи питания и никаких щелчков не наблюдается. Конденсатор должен быть рассчитан на напряжение не меньшее, чем напряжение питания.

Для любителей бесшумного включения (и для наиболее качественного внешнего управления питанием) производитель рекомендует другую схему (рисунок 2.3).

Рисунок 2.3 – Способ управления включением, рекомендованный производителем

При подаче напряжения сначала микросхема включается с некоторой задержкой (выходит из режима Stand-by), но звука нет. После этого отключается режим Mute, и звук появляется. Выключение по идее идет в обратной последовательности - сначала Mute, после Stand-by. Это происходит из-за того, что при включении управления (подачи напряжения в Х вольт) левый по схеме конденсатор заряжается через два резистора - медленнее, чем правый. А разряжается наоборот быстрее – через диод и один резистор 10 кОм. Диод может быть любой маломощный с допустимым обратным напряжением не менее напряжения питания. Конденсаторы также должны быть расчитаны на напряжение питания.

Это не самый лучший способ управления в том случае, если все подключено к плюсу питания. Дело в том, что разряд конденсаторов цепей управления выключением происходит гораздо быстрее, чем разряд конденсаторов фильтра питания. Поэтому при включении питания все работает как и описано выше, а при отключении питания режимы Mute и StdBy включатся только тогда, когда напряжение, поступающее с блока питания на микросхему, опустится до ~2 вольт. То есть, когда и так уже все замолкло.

Поэтому все эти схемы хорошо работают только на включение, тем не менее, при выключении никаких щелчков и прочих неприятных звуков не слышно - это от того, что у разработчиков получилась очень неплохая микросхема. Для правильного управления всеми этими режимами можно предложить схему как на рисунке 2.4 (в ней диод должен быть рассчитан на напряжение питания, а конденсаторы на напряжение не менее 16 вольт; R1 должен быть не больше, чем указано на рисунке).

Рисунок 2.4 – Способ управления включением и выключением, максимально использующий возможности управления

Эта схема работает очень хорошо, если есть какое-то внешнее управление (или управляющее напряжение, или переключатель), и неплохо, если никакого специального управления не требуется, а напряжение подается от источника питания (переключатель S1 при этом отсутствует, а цепь, которую он разрывал - замкнута).

Работает она так. При подаче напряжения питания (замыкании S1), конденсатор С1 заряжается через резистор R3 до напряжения, задаваемого делителем R1,R2 (которое примерно равно 5 вольт). А конденсатор С2 в свою очередь заряжается от С1, поэтому он заряжается несколько дольше. Включение производится в такой последовательности: сначала включены оба режима (и Mute, и StdBy). Потом отключается режим StdBy и внутренняя схема у микросхемы начинает работать как надо. Через некоторое время отключается режим Mute, и сигнал проходит на выход усилителя.

Выключение переключателем. При этом С2 очень быстро разряжается через диод и малое сопротивление R2, устанавливая тем самым режим Mute. Вскоре вслед за ним разряжается и С1 (для разрядного тока R3 и R4 включены параллельно, и разряд идет быстрее), отключая всю микросхему.

Если выключателя S1 нет, то все работает почти так же. При отключении сетевого напряжения, конденсаторы фильтра питания усилителя начинают разряжаться. Напряжение питания при этом падает. Как только напряжение на делителе R1, R2 станет уменьшаться, конденсатор С2 очень быстро разряжается через диод и устанавливает режим Mute. Чуть позже разряжается С1, включая StdBy. При этом напряжение питания довольно велико (оно делится делителем R1,R2) и до отключения микросхемы никаких нежелательных звуков не возникает (когда микросхема отключается, напряжение питания примерно 10-12 вольт).

Все каскады питаются от одного блока питания в основе которого лежит трансформатор ТПП-322-220-50 с рабочим напряжением в сети 220 В частотой 50 Гц. Трансформатор обеспечивает получение двухполярного напряжения в ± 38 В (после выпрямления) для питания мощного усилителя низкой частоты. Также трансформатор обеспечивает получения напряжения для питания эквалайзера и предусилителя (10 В), которой получается после его выпрямления и стабилизации [2].