Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kontrolnye_raboty_po_TViMS / Контрольные работы по ТВиМС.doc
Скачиваний:
56
Добавлен:
24.02.2016
Размер:
464.9 Кб
Скачать

Вариант № 5

  1. В группе спортсменов 7 лыжников и 3 конькобежца. Из группы случайным образом выбраны 3 спортсмена. Найти вероятность того, что все выбранные спортсмены окажутся лыжниками.

  1. Брошены две игральные кости. Чему равна вероятность того, что хотя бы на одной из них выпадет 5 очков?

  2. Некто, заблудившись в лесу, вышел на поляну, откуда вело 5 дорог. Известно, что вероятности выхода из леса за час для различных дорог равны соответственно 0,6; 0,3; 0,2; 0,1; 0,1. Чему равна вероятность того, что заблудившийся пошел по первой дороге, если известно, что он вышел из леса через час?

  3. В урне 10 белых и 5 черных шаров. Чему равна вероятность того, что, вынув наудачу с возвращением 14 шаров, получим белых не менее 12?

  4. Вероятность того, что любой абонент позвонит на коммутатор в течение часа, равна 0,01. Коммутатор обслуживает 500 абонентов. Какова вероятность, что в течение часа позвонят два абонента?

  5. Из 10 студентов, среди которых два отличника, случайным образом выбраны два студента. Случайная величина (СВ) Х – число отличников среди выбранных. Получить ряд распределения, вычислить функцию распределения F(x) и построить ее график.

  6. Вычислить функцию распределения F(x) и построить ее график. Найти математическое ожидание и дисперсию дискретной случайной величины, заданной рядом распределения

xi

-1

0

1

2

pi

0,1

0,2

0,3

0,4


  1. Плотность вероятности случайной величины Х равна

Найти постоянную С, функцию распределения F(x), математическое ожидание, дисперсию и вероятность попадания СВ на отрезок [0; 0,25]. Построить графики функций F(x) и .

9. По выборке одномерной случайной величины

  • построить график эмпирической функции распределения ,

  • построить гистограмму относительных частот равноинтервальным способом,

  • вычислить точечные оценки математического ожидания и дисперсии,

  • вычислить интервальные оценки математического ожидания и дисперсии при доверительной вероятности ,

  • выдвинуть гипотезу о законе распределения случайной величины и проверить ее при помощи критерия Пирсона при уровне значимости .

Одномерная выборка

120-140

140-160

160-180

180-200

200-220

9

21

40

18

12

10. По корреляционной таблице двумерной случайной величины

  • вычислить выборочный коэффициент корреляции ,

  • проверить нулевую гипотезу о равенстве генерального коэффициента корреляции нулю при конкурирующей гипотезе при уровне значимости,

  • найти эмпирическое уравнении:е прямой лини регрессиина.

Корреляционная таблица:

30

40

50

60

70

80

90

20

-

6

-

4

-

2

5

30

4

-

5

-

7

1

6

40

-

4

3

5

10

-

-

50

5

3

-

-

4

2

8

60

-

-

4

10

-

2

-

Вариант № 6

  1. На прилавке 10 различных книг. Причем пять книг стоят по 100 рублей, три книги по 150 рублей и две книги по 200 рублей. Покупатель наудачу выбрал две книги. Найти вероятность того. что их суммарная стоимость 300 рублей

  2. Вероятность, что студент сдаст первый экзамен, равна 0,9, второй – 0,7, третий – 0,6. Вычислить вероятность того, что студент сдаст не менее двух экзаменов.

  3. Два охотника одновременно стреляют в цель. Вероятность попадания у первого охотника равна 0,2, а у второго – 0,6. В результате залпа оказалось одно попадание в цель. Чему равна вероятность того, что промахнулся первый охотник?

  4. Приняв вероятность рождения мальчика равной 0,515, найти вероятность того, что среди 10 новорожденных будет 4 девочки.

  1. На лекции присутствует 200 человек. Какова вероятность того, что 1 мая родились, по крайней мере, 2 студента?

  1. Для проверки качества случайным образом отбираются 3 изделия. Известно, что 2% изделий некондиционные. Случайная величина (СВ) Х – число бракованных изделий в выборке. Получить ряд распределения, вычислить функцию распределения F(x) и построить ее график.

  2. Вычислить функцию распределения F(x) и построить ее график. Найти математическое ожидание и дисперсию дискретной случайной величины, заданной рядом распределения

xi

0

2

4

6

pi

0,1

0,2

0,3

0,4


  1. Плотность вероятности случайной величины Х равна

Найти постоянную С, функцию распределения F(x), математическое ожидание, дисперсию и вероятность попадания СВ на отрезок [1,3]. Построить графики функций F(x) и

9. По выборке одномерной случайной величины

  • построить график эмпирической функции распределения ,

  • построить гистограмму относительных частот равноинтервальным способом,

  • вычислить точечные оценки математического ожидания и дисперсии,

  • вычислить интервальные оценки математического ожидания и дисперсии при доверительной вероятности ,

  • выдвинуть гипотезу о законе распределения случайной величины и проверить ее при помощи критерия Пирсона при уровне значимости .

Одномерная выборка:

10,00-10,02

10,02-10,04

10,04-10,06

10,06-10,08

10,08-10,10

9

16

47

21

7

10. По корреляционной таблице двумерной случайной величины

  • вычислить выборочный коэффициент корреляции ,

  • проверить нулевую гипотезу о равенстве генерального коэффициента корреляции нулю при конкурирующей гипотезе при уровне значимости,

  • найти эмпирическое уравнение прямой лини регрессиина.

Корреляционная таблица:

10

15

20

25

30

35

14

-

-

4

2

1

-

24

2

1

-

3

8

5

34

-

4

2

1

-

3

44

3

2

10

-

3

2

54

1

3

-

9

-

1

Вариант № 7

  1. Наудачу взятый телефонный номер состоит из 5 цифр. Как велика вероятность, что в нем все цифры четные?

  2. В телестудии находятся три телевизионные камеры. Вероятность того, что в данный момент камера включена соответственно, равна 0,9; 0,8; 0,7. Найти вероятность того, что в данный момент включено не более одной камеры.

  3. Вероятности попадания в цель при каждом выстреле для трех стрелков соответственно равны: 0,2; 0,4; 0,6. После одновременного выстрела всех трех стрелков в мишени обнаружено одно попадание. Найти вероятность того, что в цель попал первый стрелок.

  4. Вероятность сдачи студентом каждого из 4 экзаменов равна 0,8. Какова вероятность сдачи 3 экзаменов?

  5. В страховом обществе застраховано 8000 автолюбителей. Размер страхового взноса равен 6 у.е., а в случае аварии страховое общество выплачивает 500 у.е. Какова вероятность что страховое общество к концу года получит доход превышающий 8000 у.е., если вероятность автолюбителю попасть в аварию равна 0,005?

  6. Производится три выстрела по мишени. Вероятность поражения первым выстрелом равна 0,3, вторым – 0,5, третьим – 0,7. Случайная величина (СВ) Х – число поражений мишени. Получить ряд распределения, вычислить функцию распределения F(x) и построить ее график.

  7. Вычислить функцию распределения F(x) и построить ее график. Найти математическое ожидание и дисперсию дискретной случайной величины, заданной рядом распределения

xi

-1

0

1

2

3

pi

0,2

0,2

0,2

0,2

0,2


  1. Плотность вероятности случайной величины Х равна

Найти постоянную С, функцию распределения F(x), математическое ожидание, дисперсию и вероятность попадания СВ на отрезок [1; 1,5]. Построить графики функций F(x) и

9. По выборке одномерной случайной величины

  • построить график эмпирической функции распределения ,

  • построить гистограмму относительных частот равноинтервальным способом,

  • вычислить точечные оценки математического ожидания и дисперсии,

  • вычислить интервальные оценки математического ожидания и дисперсии при доверительной вероятности ,

  • выдвинуть гипотезу о законе распределения случайной величины и проверить ее при помощи критерия Пирсона при уровне значимости .

Одномерная выборка:

17,5-22,5

22,5-27,5

27,5-32,5

32,5-37,5

37,5-42,5

7

20

44

20

9

10. По корреляционной таблице двумерной случайной величины

  • вычислить выборочный коэффициент корреляции ,

  • проверить нулевую гипотезу о равенстве генерального коэффициента корреляции нулю при конкурирующей гипотезе при уровне значимости,

  • найти эмпирическое уравнение прямой лини регрессиина.

Корреляционная таблица:

10

15

20

25

30

35

20

1

5

-

7

-

4

40

2

-

4

-

6

5

60

-

3

5

4

6

-

80

10

-

2

3

-

5

100

2

4

-

4

8

10

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.