Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Архив WinRAR_1 / 3 - Электорооборудование / 66 - регулировка угла опережения зажигания

.doc
Скачиваний:
68
Добавлен:
21.02.2016
Размер:
35.33 Кб
Скачать

2.3. Момент зажигания

Момент зажигания (угол опережения зажигания) оказывает существенное влияние на мощность, экономичность и токсичность двигателя.

Поскольку, сгорание рабочей смеси в цилиндрах двигателя происходит не мгновенно, то для полного сгорания рабочей смеси и получения максимальной мощности нужно зажигать рабочую смесь не в верхней ВМТ хода сжатия, а несколько раньше, т.е. с некоторым углом опережения зажигания. Угол опережения зажигания отсчитывается от положения коленчатого вала в момент подачи искры до положения, когда поршень приходит в ВМТ.

Угол опережения зажигания выбирают так, чтобы на каждом режиме работы максимум давления, развиваемого в цилиндре в процессе сгорания смеси, располагался спустя несколько градусов после ВМТ.

При слишком раннем зажигании возникает явление детонации, сопровождаемое чрезвычайно резким повышением давления, вследствие чего поршень испытывает сильные удары и вибрационные механические нагрузки.

При позднем зажигании происходит перегрев двигателя, снижение его мощности и неполное сгорание смеси, т.е. перерасход топлива и повышение токсичности отработавших газов.

Оптимальный угол опережения зажигания должен выбираться с учетом частоты вращения коленчатого вала, нагрузки двигателя, температуры охлаждающей жидкости и всасывающего воздуха, состава выходящих газов, скорости изменения положения дроссельной заслонки. Очевидно, что чем больше частота вращения коленчатого вала двигателя (скорость движения поршня), тем большим должен быть угол опережения зажигания.

С другой стороны, чем быстрее развивается процесс сгорания рабочей смеси, тем больше вероятность возникновения детонации, поэтому угол опережения должен быть меньше. Скорость сгорания рабочей смеси зависит от давления (сжатия), состава смеси и сорта топлива. С увеличением открытия дроссельной заслонки (т.е. при увеличении нагрузки двигателя) увеличивается количество поступающей в цилиндр смеси, ускоряется процесс сгорания, следовательно, необходим меньший угол опережения зажигания.

При переходе на топливо, более склонное к детонации, опережение зажигания необходимо уменьшить.

Двигатели с более высокой степенью сжатия имеют более высокие температуры и давления в камере сгорания, в результате чего про­цесс сгорания в них происходит быстрее, и они требуют меньшего угла опережения зажигания, чем двигатели с низким сжатием.

Таким образом, угол опережения зажигания в зависимости от режима работы двигателя должен автоматически регулироваться так, чтобы обеспечивались его эффективные показатели, и было исключено детонационное сгорание топлива.

На практике все эти весьма противоречивые требования реализовать довольно сложно. Например, для гарантированного устранения детонации приходится допускать заведомое снижение эффективных показателей работы двигателя.

В классических системах зажигания работа двигателя контролируется с помощью совместного действия двух механических регуляторов опережения зажигания: центробежного и вакуумного. Первый из них реагирует на изменение частоты вращения коленчатого вала, а второй - на изменение нагрузки двигателя.

Центробежный регулятор работает таким образом, что с возрастанием частоты вращения коленчатого вала угол опережения зажигания автоматически увеличивается, и наоборот.

Вакуумный регулятор автоматически увеличивает угол опережения зажигания при возрастании разряжения во впускном трубопроводе двигателя (т.е. при уменьшении нагрузки), и наоборот.

Механические регуляторы не обладают достаточной гибкостью настройки, поэтому они не могут обеспечить требуемые параметры регулирования во всем диапазоне режимов работы двигателя. В процессе работы подвижные части регулятора изнашиваются, а упругие детали (пружины диафрагмы) с течением времени стареют. Эти регуляторы обладают значительной инерционностью. Механические автоматы опережения зажигания не могут воспроизвести более сложные характеристики опережения по скорости, нагрузке, а также температуре двигателя. Кроме того, угловые погрешности привода датчиков-распределителей приводят к повышенному асинхронизму искрообразования и «размытости» угла зажигания. Эти регуляторы имеют ряд других недостатков: износ кулачка, резонансные явления и др.

Применение микропроцессорных систем зажигания с электронными автоматами опережения зажигания устраняет указанные недостатки этих систем, связанные с использованием механических регуляторов опережения зажигания со сложным приводом.

Микропроцессорная система зажигания практически лишена подвижных частей, что обеспечивает стабильность воспроизведения исходного закона регулирования момента искрообразования в процессе эксплуатации.

Радикальное средство борьбы с детонационным сгоранием и вместе с тем работы двигателя при оптимальном угле опережения зажигания электронные (микропроцессорные) системы зажигания с контуром обратной связи по сигналу датчика детонации (адаптивные системы зажигания), воспринимающего механические колебания блока или головки блока двигателя. Обычно с помощью датчика детонации регистрируют начало детонационного сгорания до появления сильной детонации. Применение таких систем позволяет получить значительную экономию топлива, снизить токсичность и обеспечить возможность работы двигателя на низкооктановых сортах топлива.

Развиваемое системой зажигания вторичное напряжение при реальных условиях эксплуатации должно превышать пробивное напряжение свечей с определенным запасом (не ниже 1,5). Отношение вторичного напряжения системы зажигания к пробивному напряжению в свечах называют коэффициентом запаса по вторичному напряжению К = U2 / Uп , где U2 - вторичное напряжение, развиваемое системой зажигания; Uп - пробивное напряжение свечей.