Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Архив WinRAR_1 / 3 - Электорооборудование / 62 - электростартерный пуск

.doc
Скачиваний:
83
Добавлен:
21.02.2016
Размер:
162.3 Кб
Скачать

3.1. Назначение и требования к системам пуска двигателя

Для запуска ДВС необходимо сообщить коленчатому валу вращение с определенной (пусковой) частотой, при которой обеспечивается нормальное протекание процессов смесеобразования, воспламенения и горения топлива. Пусковая частота вращения карбюраторных двигателей составляет 40...50 мин-1. У дизелей частота вращения коленчатого вала должна быть не менее 100... 150 мин-1, так как при более медленном вращении сжимаемый воздух не нагревается до необходимой температуры.

При пуске необходимо преодолеть момент сопротивления на трение, момент, создаваемый при сжатии рабочей смеси в цилиндрах, и момент инерции вращающихся частей двигателя.

Развиваемый стартером крутящий момент зависит от мощности и конструкции двигателя, числа цилиндров, степени сжатия, вязкости масла и частоты вращения двигателя стартера. Момент сопротивления зависит от окружающей температуры. Изменение температуры влияет на физико-механические свойства материалов (топлива, масла, охлаждающей жидкости). Наибольшие трудности вызывает пуск двигателя при низких температурах вследствие повышения вязкости масла и топлива, снижения его испаряемости. Ухудшение условий для воспламенения и сгорания топливно-воздушной смеси, а также характеристик системы зажигания обусловлено падением напряжения на зажимах аккумуляторной батареи при работе ее в стартерном режиме.

Электрический стартер - машина кратковременного действия. Продолжительность пуска карбюраторного двигателя составляет 10 с, дизеля- 15. В связи с этим тепловые и электромагнитные нагрузки, допускаемые для стартера, значительно выше (в 2 раза), чем для машин, работающих в длительном режиме. Стартер должен обладать большим крутящим моментом для преодоления момента сопротивления двигателя поэтому применяется электродвигатель с последовательным возбуждением. При запуске он развивает больший крутящий момент на валу якоря, чем двигатель с параллельным возбуждением. Вместе с тем, электродвигатель с последовательным возбуждением при холостом ходе увеличивает частоту вращения ротора теоретически до бесконечности. Практически возрастание частоты вращения ротора в этом случае ограничивается наличием механических потерь на трение в подшипниках, щеток на коллекторе и т.п.

В стартерах большой мощности КПД выше, потери на трение относительно меньше, поэтому частота вращения ротора значительно возрастает. Так как диаметр якоря стартера большой мощности также большой, то создается опасность "разноса" якоря при холостом ходе, т.е. вырывания его обмотки из пазов центробежной силой. Поэтому в мощных стартерах для ограничения числа оборотов холостого хода применяют добавочную параллельную обмотку, т.е. смешанное возбуждение. Магнитный поток параллельной обмотки составляет только 4...5% общего магнитного потока, поэтому она мало влияет на характеристики двигателя.

В зависимости от конструкции и принципа действия различают стартеры с инерционным и с принудительным электромеханическим перемещением шестерни привода, с принудительным вводом шестерни в зацепление и с самовыключением ее после пуска двигателя.

Наибольшее распространение получили в настоящее время стартеры с принудительным вводом шестерни и самовыключением ее посла пуска двигателя.

3.2. Устройство стартера

На рис. 3.1 показан разрез автомобильного стартера с электро- магнитным реле и дистанционным управлением.

На одном из концов вала имеется муфта свободного хода 9 с ведущей шестерней 8. Тяговое электромагнитное реле 3 с помощью рычага перемещает шестерню и вводит ее в зацепление с зубчатым венцом маховика двигателя. Одновременно с перемещением шестерни контактным диском 2 замыкается электрическая цепь стартера. Обмотка электромагнитного реле состоит из двух обмоток - втягивающей и удерживающей. Кроме тягового реле стартер имеет реле включения, обмотка которого включена на разность напряжения между батареей и генератором. После пуска, когда генератор начнет работать и разность напряжений между аккумулятором и генератором начнет уменьшаться, реле включения отключает удерживающую обмотку и электромагнит. Тяговое реле стартера 4 выключается, а возвратная пружина 6 выводит шестерню из зацепления с зубчатым венцом маховика двигателя. Одновременно происходит электрическое отключение стартера от батареи.

Корпус стартера и полюсные наконечники изготавливаются из листовой электротехнической стали. Обмотки якоря статора и полюсов из голой медной прямоугольной шины с небольшим количеством витков, изолированных друг от друга бумагой и покрытых лаком.

Рис.3.1. Схема стартера с электромагнитным тяговым реле и дистанционным управлением: 1-контакт зажима; 5-якорь реле; 10-корпус стартера; 11-якорь; 12-обмотка возбуждения; 13-щетка; 14-коллектор; (остальные позиции указаны в тексте)

3.3. Устройство и работа приводных механизмов

Приводной механизм - устройство, обеспечивающее ввод и удержание шестерни стартера в зацеплении с венцом маховика во время пуска ДВС, передачу необходимого вращающего момента коленчатому валу и предохранение якоря электродвигателя от разноса вращающимся маховиком после пуска двигателя.

Приводные механизмы электростартера с принудительным механическим или электромеханическим перемещением шестерни имеют роликовые фрикционные или храповые муфты свободного хода, которые передают вращающий момент от вала стартера к коленчатому валу двигателя во время пуска и, работая в режиме обгона, автоматически разъединяют стартер и ДВС после пуска.

Наибольшее распространение получили приводные механизмы с роликовыми муфтами свободного хода, в которых ролики заклиниваются в связи с возникновением сил трения в сопряженных деталях.

Муфта свободного хода (рис. 3.2) обеспечивает передачу вращающего момента только с вала якоря на венец маховика и предотвращает вращение якоря от маховика после пуска двигателя.

На шлице во и втулке жестко укреплена ведущая обойма 4. В ней имеются четыре клинообразных паза, в которых установлены ролики 3, отжимаемые в сторону узкой части паза усилием пружины 10 плунжеров 9. Пружина надета на упоры II плунжеров. Шестерня 7 выполнена вместе с ведомой обоймой. Упорные шайбы 5 и 6 ограничивают осевое перемещение роликов 3.

Рис. 3.2. Муфта свободного хода: 1 - кожух, 2- уплотнитель; 8 - пружины (остальные позиции указаны в тексте)

3.4. Принцип работы системы пуска двигателя

Система пуска (рис. 3.3) содержит стартер 1, аккумуляторную батарею 2 и выключатель стартера 3. Стартер состоит из электродвигателя постоянного тока 4, тягового реле 5 и механизма привода 10. Тяговое реле обеспечивает ввод шестерни 12 привода 8 зацепления с венцом маховика 13, а также подключение электрической цепи электродвигателя стартера к аккумуляторной батарее. Механизм привода 10 передает вращение от вала якоря на венец маховика 13 двигателя и предотвращает передачу вращения от маховика на вал якоря после начала работы двигателя.

Шестерня стартера должна находиться в зацеплении с зубчатым венцом только во время пуска двигателя. После пуска частота вращения коленчатого вала достигает порядка 1000 мин-1. Если при этом вращение будет передаваться на якорь стартера, его частота вращения повысится до 10000... 15000 мин-1. Даже при кратковременном увеличении частоты вращения до такого значения возможен разнос якоря. Для предотвращения этого, усилие от вала якоря к шестерне привода у большинства стартеров передается через муфту свободного хода, которая обеспечивает передачу крутящего момента только в одном направлении от вала якоря к маховику. Шестерня в современных стартерах перемещается электромагнитным включением и дистанционным управлением. Для увеличения крутящего момента на коленчатом валу используется пониженная передача с передаточным числом 10...15.

При замыкании контактов выключателя по обмотке электромагнита протекает ток, и якорь электромагнита 8 втягивается, а соединенный с ним рычаг II перемещает шестерню 12. Одновременно якорь давит на пластину 6, которая в момент ввода шестерни в зацепление с венцом маховика замыкает контакты.

Рис. 3.3. Принципиальная схема системы пуска

Ток через замкнутые контакты поступает в обмотку электродвигателя, и якорь начинает вращаться. После пуска двигателя водитель выключает цепь обмотки электромагнита, и шестерня возвращается в исходное положение.

Для обеспечения длительной работоспособности привода и стартера в целом важное значение имеет своевременное отключение стартера. При задержке отключения увеличивается продолжительность работы муфты свободного хода привода, она нагревается, смазка разжижается и вытекает, что приводит к быстрому износу муфты.