Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тема 10.doc
Скачиваний:
140
Добавлен:
20.02.2016
Размер:
509.44 Кб
Скачать

5. Теория прочности Мора

Рассмотренные выше теории, основанные на проверке прочности для пластичных материалов по величине касательных напряжений, не учитывают различие свойств материала при работе на растяжения и сжатие, т.е. для случаев, когда . Такое различие свойств материалов учитывается теорией, получившей имя немецкого ученого Мора. Эта теория, являясь дополнением к третьей теории прочности, имеет довольно громоздкий вид. Это связано с тем, что при ее получении напряженное состояние описывалось графическим образом с помощью так называемых кругов Мора.

Рассмотрим другой способ, основанный на обобщении теории наибольших касательных напряжений. В соответствии с этой теорией условие прочности имеет вид (10.19). Перепишем это уравнение следующим образом:

. (10.24)

Уравнение (10.24) в графическом смысле представляет собой прямую линию, где ;; при; при.

. (10.25)

Вид этой прямой приведен на рис.10.6,а.

Рис.10.6

Любая точка, принадлежащая плоскости , например, точка А, отвечает определенному напряженному состоянию. Прямая (10.25) делит эту плоскость на три зоны: зона предельных напряженных состояний – точки этой зоны лежат на предельной прямой линии (10.25); зона безопасных напряженных состяний точки этой зоны лежат выше и левее предельной прямой (внутренняя область); зона опасных напряженных состояний – точки этой зоны лежат правее и ниже предельной прямой (внешняя область). В точках этой области гарантировать прочность нельзя.

Таким образом, приведенный на рис.10.6,а график дает возможность оценить с помощью третьей теории прочность элемента по местонахождению точки, определяющей данное напряженное состояние ().

Используя аналогию, рассмотрим случай, когда . В этом случае точки предельной прямой, принадлежащие осям координат определяют следующие напряженные состояния:;.

Вид предельной прямой для этого случая приведен на рис.10.6,б. Опишем эту прямую.

Уравнение прямой в отрезках имеет вид:

. (10.26)

Здесь: ;;;.

Введем коэффициент , подставим в уравнение (10.26) и преобразуем его к виду:

. (10.27)

Уравнение (10.27) является уравнением предельной прямой. Левая часть этого уравнения представляет собой эквивалентные напряжения для рассматриваемого напряженного состояния. Вводя знак неравенства в уравнение предельной прямой (10.27), получаем теорию прочности Мора:

. (10.28)

Неравенство (10.28) описывает внутреннюю область безопасных напряжений (Рис.10.6,б).

Теория прочности Мора является обобщением теории наибольших касательных напряжений и будет ей идентичной при равенстве допускаемых напряжений . В этом случае коэффициент.

Пятая теория (теория прочности Мора) прочности хорошо подтверждается опытом для большинства строительных материалов (камень, дерево, пластмассы), т.е. для тех материалов, которые не укладываются в сформулированные ранее классические теории прочности.

Подводя итог рассмотрению классических теорий прочности, можно написать условие прочности при объемном напряженном состоянии в таком виде:

, (10.29)

где эквивалентное (расчетное) напряжение;допускаемое напряжение при простом растяжении и сжатии. Расчетное напряженное состояниеможет быть истолковано как растягивающее напряжение при линейном напряженном состоянии, эквивалентном рассматриваемому сложному напряженному состоянию в отношении опасности для прочности материала.

Выбор теории прочности, а значит и формулы для , таким образом, отвечает на вопрос: какой критерий прочности материала столь же надежен для рассматриваемого объемного напряженного состояния, как и для линейного?

Что касается практического применения теорий прочности, то здесь следует иметь ввиду, что любой материал в зависимости от условий работы и вида напряженного состояния может находиться и в хрупком и в пластичном состоянии. В связи с этим следует выделить те теории прочности, пригодные для проверки прочности материала при его пластическом состоянии, и те, которые следует применять для проверки прочности материалов в хрупком состоянии. Эксперименты показывают, что для пластичного состояния матерала наиболее достоверной является энергетическая теория прочности. Незначительно расходится с опытами для пластичных материалов теория наибольших касательных напряжений.

Что касается хрупкого состояния материалов, то для оценки прочности в этом случае иногда используется вторая теория прочности теория наибольших линейных деформаций; имеются опыты, которые показывают, что в ряде случаев подтверждается для такого состояния материала и теория наибольших нормальных напряжений; ею пользуются на практике для проверки прочности таких материалов как камень, чугун и т.д.

Кроме классичесих теорий прочности, рассмотренных в данной теме, существует еще несколько десятков так называемых “новых”теорий, предлагающих новые подходы к оценке прочности конструкционных материалов. В рамках настоящего пособия эти теории не приводятся. Тех, кого эта проблема интересует, может обратиться к специальной литературе учебного или справочного характера, часть из которой приводится в конце пособия.

Все приведенные выше теории прочности были записаны через главные напряжения. В практике мы часто имеем дело не с главными напряжениями. В связи с этим при практических расчетах удобно иметь формулы для эквивалентных напряжений для различных теорий прочности, выраженные через нормальные и касательные напряжения, действующие в произвольных площадках.

Рассмотрим несколько частных случаев плоского напряженного состояния и запишем для этих случаев условия прочности в соответствии с различными теориями.

Одним из таких частных видов напряженного состояния приведен на рис.10.7. Этот вид напряженного состояния часто встречается в расчетной практике при плоском поперечном изгибе, некоторых видах сложного сопротивления и т.д.

Рис 10.7

При записи эквивалентных напряжений для приведенного на рис.10.7 частного вида напряженного состояния примем во внимание, что

. (10.30)

Подставляя (10.30) в выражение (10.17), условие прочности в соответствии с первой теорией прочности получим в виде:

. (10.31)

Для второй теории выражение для условия прочности после подстановки (10.30) в (10.18) принимает вид:

. (10.32)

Для третьей теории условие прочности после подстановки (10.30) в (10.19) запишется так:

. (10.33)

По четвертой теории условие прочности после подстаноки (10.30) в (10.23) и некоторых преобразований будет иметь вид:

. (10.34)

Как уже отмечалось выше, для оценки прочности пластичных материалов используют как теорию наибольших касательных напряжений, так и энергетическую теорию прочности. Выясним на примере рассматриваемого выше частного случая напряженного состояния, каково расхождение между этими теориями прочности. Для этого, используя выражения (10.33) и (10.34), вычислим значения эквивалентных напряжений при различных исходных значениях и.

Пусть . Тогда. При;. Сравнивая эти значения, приходим к выводу, что максимальное расхождение между третьей и четвертой теориями составляет 15%. В практических задачах при небольших значениях касательных напряжений это расхождение существенно меньше. Поэтому используют обе теории для оценки прочности материалов в пластическом состоянии.

Пример 10.1.Исследовать напряженное состяние в стенке стального сварного двутавра в месте перехода от полки к стенке (в точке А) и выполнить проверку прочности балки, используя четвертую теорию прочности. В рассматриваемом сечении балки изгибающий момент равенкНм, поперечная силакН. Поперечное сечение балки приведено на рис.10.8а.

Рис.10.8

Решение:

1. Найдем момент инерции двутавра относительной оси в (см4).

см4.

2. Определяем нормальные напряжения в точке А:

МПа.

3. Определяем касательные напряжения в точке А поперчного сечения:

МПа.

4. Вычисляем эквивалентное напряжение в точке А, используя четвертую теорию прочности. Напряженное состояние в точке А – плоское (Рис.10.8,б). Для частного случая напряженного состояния, приведенного на рис.10.8,б эквивалентное напряжение по четвертой теории равно:

МПа.

5. Сравниваем расчетное напряжение с допускаемым для стали МПа, используя условие прочности (10.34). Расчетное напряжениеМПа оказалось меньше допускаемого. Следовательно, напряженное состояние в точке А поперечного сечения балки является безопасным.

Пример 10.2.Проверить прочность чугунной детали (работающей на сложное напряженное состояние), если главные напряжения в опасной точке сечения:МПа;;МПа. Коэффициент Пуассона.

Допускаемое напряжение на растяжение МПа, допускаемое напряжение на сжатиеМПа.

Решение:

1. Для проверки прочности чугуна на растяжение следует применить теорию наибольших линейных деформаций:

МПа.

Полученное расчетное напряжение блитзко к допускаемому на растяжение.

2. Если бы мы воспользовались для расчета теорией наибольших касательных напряжений (неприменимой для хрупкого состояния материала), то получили бы ошибочные результаты:

МПа.

В этом случае расчетное напряжение оказывается близким к разрушающему напряжению.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]