Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Luchi_shpory.doc
Скачиваний:
121
Добавлен:
19.02.2016
Размер:
438.78 Кб
Скачать

Билет № 2

1. Основные методы рентгенологических исследований. Виды, характеристика.

  1. Этапы взаимодействия ионизирующего излучения с клетками и тканями организма человека.

  2. Контактные методы лучевой терапии. Принцип. Возможности. Показания. Противопоказания.

1 Методы рентгенологического исследования делятся на основные и специальные, частные. К основным методам рентгенологического исследования относятся: рентгенография, рентгеноскопия, электрорентгенография, компьютерная рентгеновская томография.Рентгеноскопия – просвечивание органов и систем с применением рентгеновских лучей. Рентгеноскопия – анатомо-функциональный метод, который предоставляет возможность изучения нормальных и патологических процессов и состояний организма в целом, отдельных органов и систем, а также тканей по теневой картине флюоресцирующего экрана.Рентгенография – фотосъемка посредством рентгеновских лучей. При рентгенографии снимаемый объект должен находиться в тесном соприкосновении с кассетой, заряженной пленкой. Рентгеновское излучение, выходящее из трубки, направляют перпендикулярно на центр пленки через середину объекта (расстояние между фокусом и кожей больного в обычных условиях работы 60-100 см). Электрорентгенография. Метод получения рентгеновского изображения на полупроводниковых пластинах.Принцип метода: при попадании лучей на высокочувствительную селеновую пластину в ней меняется электрический потенциал.Селеновая пластинка посыпается порошком графита.Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, в которых сохранились положительные заряды, и не удерживаются в тех местах, которые потеряли заряд под действием рентгеновского излучения. Электрорентгенография позволяет в 2-3 минуты перенести изображение с пластины на бумагу.Компьютерная рентгеновская томография (КТ). КТ основана на принципе создания рентгеновского изображения органов и тканей с помощью ЭВМ. В основе КТ лежит регистрация рентгеновского излучения чувствительными дозиметрическими детекторами. Принцип метода заключается в том, что после прохождения лучей через тело пациента они попадают не на экран, а на детекторы, в которых возникают электрические импульсы, передающиеся после усиления в ЭВМ, где по специальному алгоритму они реконструируются и создают изображение объекта, который из ЭВМ подается на телемонитор. Изображение органов и тканей на КТ, в отличие от традиционных рентгеновских снимков, получается в виде поперечных срезов (аксиальных.

2 Основной ареной действия ионизирующей радиации на живые системы являются “атомы живого” – клетки и их органеллы. Критическими при действии ионизирующего излучения внутриклеточными структурами являются хромосомы, состоящие из нуклеиновых кислот – хранителей наследственной информации и специальных белков. Под действием ионизирующего излучения из молекулы белка выбивается электрон, образуется дефектный участок, лишенный электрона, который мигрирует по полипептидной цепи за счет переброски соседних электронов до тех пор, пока не достигнет участка с повышенными электрон-донорными свойствами. В этом месте в боковых цепях аминокислот возникают свободные радикалы.Образование свободных радикалов влечет за собой изменение структуры белка, что приводит к нарушению его функций (ферментативной, гормональной, рецепторной и др.). наиболее чувствительные к ионизирующему излучению ткани содержат клетки:1Находящиеся в момент облучения в процессе активного деления.2Проходящие многие трансформации в своем жизненном цикле.3Не имеющие четкой специализации по своей структуре и функциям.Исключением являются лимфоциты и ооциты, которые являются высокорадиочувствительными, находясь в интерфазе.

Ионизирующее излучение — в самом общем смысле — различные виды микрочастиц и физических полей, способные ионизировать вещество. Биологическое действие ионизирующих излучений. Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки. После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Биологическая стадия лучевого поражения. Среди многих проявлений действия излучения на жизнедеятельность клетки подавление способности к делению является наиболее важным. Гибель клеток может возникать в широком временном диапазоне: часов-лет. По механизму лучевого поражения клеток следует различать две основные формы гибели: интерфазную (не связанную с митозом) и репродуктивную – гибель при попытке разделиться. Радиобиологи различают два основных типа лучевых повреждений ДНК: сублетальные и потенциально летальные повреждения. Первый – это такие вызванные радиацией изменения, которые сами по себе не ведут к гибели клеток, но облегчают ее при продолжающемся или последующем облучении. Например, одиночные разрывы сами по себе не смертельны, но чем больше их возникает в молекуле ДНК, тем больше вероятность их совпадения и образования летального двойного разрыва. Второй тип – потенциально летальные повреждения – сами по себе вызывают гибель клетки, но все же в определенных условиях могут быть устранены репаративной системой. В жизненном цикле клетки наибольшая радиочувствительность в процессе митоза.

Первая - чисто физическая стадия взаимодействия, протекающая за миллиардные доли секунды, состоит в передаче части энергии фотона (частицы) одному из электронов атома с последующей ионизацией и возбуждением атомов (молекул. Ионам и возбужденным атомам, обладающим избыточной энергией, заимствованной у фотона (частицы) высокой энергии, в силу этого свойственна повышенная химическая реактивность, они способны вступать в такие реакции, которые не возможны для обычных, невозбужденных атомов (молекул) Вторая – физико-химическая стадия взаимодействия излучения с веществом протекает уже в зависимости от состава и строения облучаемого вещества. Принципиальное значение имеет наличие в облучаемой системе воды и кислорода. Если их нет, возможности химического воздействия активированных радиацией атомов ограничены, локализованы .Третья - химическая стадия лучевого воздействия длится, как правило, несколько секунд. На этой стадии появляются биохимические повреждения биологически важных макромолекул (нуклеиновых кислот, липидов, белков, углеводов). Различают прямое воздействие радиации, когда происходит непосредственное взаимодействие ионизирующего излучения с критическими молекулами, и косвенное воздействие, через свободные радикалы, возникающие при взаимодействии ионизирующего излучения с водой, которые и наносят основное поражение.

3 К контактным относятся такие методы, при которых источник непосредственно прилежит к облучаемым тканям. Всем контактным методам присуще сходное распределение энергии в объеме облучаемых тканей, которое характеризуется созданием высоких величин доз в тканях, прилежащих к поверхности источника излучения и резким падением на их ближайшем от источника расстоянии. Поэтому контактное облучение в самостоятельном виде находит применение лишь при небольших опухолях, не превышающих 1,5-2,0 см в диаметре. Большинство контактных методов сопровождается повышенной радиационной опасностью, в связи с этим наиболее широкое применение находят такие методы, как близкофокусная рентгенотерапия, внутриполостная, тканевая и аппликационная гамма-терапия на шланговых аппаратах, при использовании которых лучевая нагрузка на персонал в значительной мере снижена.

Контактные методы облучения - это такие методики ЛТ, при которых источник ИИ находится на расстоянии менее 30 см от облучаемого объекта. Различают следующие виды контактной ЛТ: =аппликационная ЛТ; =внутриполостное облучение;

=внутритканевая ЛТ.

=При аппликационной ЛТ источники ИИ помещаются непосредственно на поверхности тела больного без нарушения целостности тканей.(лечение поверхностно расположенных новообразований: рак кожи, губы, рецидивы рака молочной железы и др.). Аппликационная ЛТ выполняется в течение 5-10 дней, причем ежедневные процедуры проводятся в течение нескольких часов. =Внутриполостное облучение производят путем введения источника излучения в естественные (полость рта, матки; пищевод, прямая кишка) или искусственно образованные (послеоперационная рана и др.) полости. Внутритканевая ЛТ. Помимо введения закрытых радиоактивных источников в полости тела больного можно вводить непосредственно в опухоли или размещать на поверхностях опухолей иглы, гранулы, проволоки, содержащие радиоактивные источники. При внутритканевой ЛТ источник излучения находится в опухоли или в тканях организма больного в течение всего процесса лечения. =При внутреннем облучении перорально, внутримышечно или внутривенно вводятся органотропные радионуклиды или меченые соединения, которые избирательно поглощаются опухолью или другими патологически измененными тканями.

БИЛЕТ № 3

  1. Частные методы рентгенологических методов исследований. Виды, характеристика.

  2. Основные особенности биологического действия ионизирующего излучения.

  3. Радикальная, паллиативная, симптоматическая лучевая терапия

1 Частные рентгенологические методы.1)флюорография – способ массового поточного рентгенологического обследования, состоящий в фотографировании рентгеновского изображения с просвечивающего экрана на пленку фотоаппаратом. 2)томография (обычная) – для устранения суммационного характера рентгеновского изображения. Принцип: в процессе съемки рентгенологическая трубка и кассета с пленкой синхронно перемещаются относительно больного. В результате на пленке получается более четкое изображение только тех деталей, которые лежат в объекте на заданной глубине, в то время как изображение деталей, расположенных выше или ниже, становится нерезким, «размазывается». 3)полиграфия – это получение нескольких изображений исследуемого органа и его части на одной рентгенограмме. Делается несколько снимков (в основном 3) на одной пленке через определенное время. 4)рентгенокимография – это способ объективной регистрации сократительной способности мышечной ткани функционирующих органов по изменению контура изображения. Снимок производится через движущуюся щелевидную свинцовую решетку. При этом колебательные движения органа фиксируются на пленку в виде зубцов, имеющих характерную форму для каждого органа.5)дигитальная рентгенография – включает в себя детекцию лучевой картины, обработку и запись изображения, представление изображения и просмотр, сохранение информации. При этой технологии детектор преобразует рентгеновское излучение после его прохождения через исследуемый объект в электрический сигнал, который в аналого-цифровом преобразователе «превращается» в числовые значения. Компьютерная обработка получаемого цифрового изображения служит созданию такого изображения, которое оптимально пригодно для анализа результата обследования. 6)рентгенодиапевтика – лечебно-диагностические процедуры. Имеются в виду сочетанные рентгеноэндоскопические процедуры с лечебным вмешательством. Например: при механической желтухе с дренированием желчных путей и введением медикаментов непосредственно в желчный пузырь. К рентгенодиапевтике (интервенционной радиологии) относят рентгеноэндоваскулярные вмешательства: рентгеноэндоваскулярная окклюзия и рентгеноэндоваскулярная дилатация».

2 Ионизирующее излучение — в самом общем смысле — различные виды микрочастиц и физических полей, способные ионизировать вещество. Биологическое действие ионизирующих излучений. Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки. После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Биологическая стадия лучевого поражения. Среди многих проявлений действия излучения на жизнедеятельность клетки подавление способности к делению является наиболее важным. Гибель клеток может возникать в широком временном диапазоне: часов-лет. По механизму лучевого поражения клеток следует различать две основные формы гибели: интерфазную (не связанную с митозом) и репродуктивную – гибель при попытке разделиться. Радиобиологи различают два основных типа лучевых повреждений ДНК: сублетальные и потенциально летальные повреждения. Первый – это такие вызванные радиацией изменения, которые сами по себе не ведут к гибели клеток, но облегчают ее при продолжающемся или последующем облучении. Например, одиночные разрывы сами по себе не смертельны, но чем больше их возникает в молекуле ДНК, тем больше вероятность их совпадения и образования летального двойного разрыва. Второй тип – потенциально летальные повреждения – сами по себе вызывают гибель клетки, но все же в определенных условиях могут быть устранены репаративной системой. В жизненном цикле клетки наибольшая радиочувствительность в процессе митоза.

Первая - чисто физическая стадия взаимодействия, протекающая за миллиардные доли секунды, состоит в передаче части энергии фотона (частицы) одному из электронов атома с последующей ионизацией и возбуждением атомов (молекул. Ионам и возбужденным атомам, обладающим избыточной энергией, заимствованной у фотона (частицы) высокой энергии, в силу этого свойственна повышенная химическая реактивность, они способны вступать в такие реакции, которые не возможны для обычных, невозбужденных атомов (молекул) Вторая – физико-химическая стадия взаимодействия излучения с веществом протекает уже в зависимости от состава и строения облучаемого вещества. Принципиальное значение имеет наличие в облучаемой системе воды и кислорода. Если их нет, возможности химического воздействия активированных радиацией атомов ограничены, локализованы .Третья - химическая стадия лучевого воздействия длится, как правило, несколько секунд. На этой стадии появляются биохимические повреждения биологически важных макромолекул (нуклеиновых кислот, липидов, белков, углеводов). Различают прямое воздействие радиации, когда происходит непосредственное взаимодействие ионизирующего излучения с критическими молекулами, и косвенное воздействие, через свободные радикалы, возникающие при взаимодействии ионизирующего излучения с водой, которые и наносят основное поражение.

3 Радикальная,паллиативная, симптоматическая лучевая терапия. Радикальная лучевая терапия - излечение (ИИ действует на первичную опухоль и на предполагаемые зоны лимфогенного метастазирования). Она направлена на полное излечение больного от опухоли и регионарных метастазов путем подведения канцерицидной дозы радиации. Уровни канцерицидных доз для различных опухолей разные и устанавливаются в зависимости от гистологического ее строения, митотической активности и степени дифференцировки клеточных элементов. Поддаются радикальному лечению (радиокурабельные опухоли), относят рак кожи, губы, носоглотки, гортани, молочной железы и др. Успех - на относительно ранних стадиях.

Паллиативная лучевая терапия - продление жизни (приостановить рост опухоли, уменьшить ее размеры). Предпринимается для уменьшения размеров опухоли и ее метастазов, стабилизации опухолевого роста и используется в тех случаях, когда невозможна лучевая терапия по радикальной программе, при этом суммарная очаговая доза (СОД), как правило, составляет 2/3 канцерицидной.

Симптоматическая лучевая терапия - устранение отдельных симптомов, отягощающих состояние больного (боль, синдром сдавления верхней полой вены и др.). Применяется для снятия или уменьшения клинических симптомов злокачественного поражения, могущих привести к быстрой гибели больного или существенно ухудшающих качество его жизни. Облучение с симптоматической целью проводится по жизненным показаниям при опухолях таких локализаций, при которых лучевая терапия – единственный метод лечения. Суммарная поглощенная доза излучения устанавливается индивидуально, в зависимости от достигнутого эффекта.

БИЛЕТ № 4

  1. Получение и использование рентгеновских лучей. Рентгенодиагностический аппарат, его основные части.

  2. Контрастные средства в магнитно- резонансной томографии.

  3. Противопоказания к магнитно-резонансной томографии.

1 .В 1895г.нем.физик Рентген открыл лучи. Назвал их Х-лучами. В наст. время в мед. с помощью рентг. лучей получ. около 90%всех визуализируемых изображений. Рентг. излуч. получают на высоковольтных электрич. установках. Источником рентг. излуч. явл. рентг. трубка, закреплённая в штативном устройстве рентген. аппарата. Состоит из катода и анода, стеклян. колбы. Пучок излучения пропускают ч/з исслед. часть тела. В качестве приёмника излучения использ. приборы, кот. трансформируют энергию неоднородн. рентгеновск. пучка. Простейш. приёмник-флюоресцентн. экран для просвечивания. Он покрыт спец. составом,а поверх просвинцован стеклом (для защиты врача). Колба рентген. трубки сост. из прочного стекла способного пропуск. рентг. лучи (внутри её вакуум, что позволяет получать рентген. лучи)

Рентгенодиагностический аппарат, его основные части Как и любую систему передачи информации, систему лучевой диагностики можно представить в виде пространственно-временного фильтра, составленного из нескольких каскадов:1.Каскада генерации излучения (рентгеновская трубка, радионуклид, пьезоэлектрический кристалл, источник радиоволн в магнитном поле);2.Каскада модуляции, который представляется пространственно-временной неравномерностью исследуемого объекта;3.Каскада детектирования (канала регистрации лучевого изображения);4.Каскада преобразования в световое изображение и его диагностической оценки.

2 . Контрастные средства в магнитно-резонансной томографии. Парамагнитные контрастные средства. Парамагнитными свойствами обладают атомы с одним или несколькими неспаренными электронами. Это магнитные ионы гадолиния, хрома, никеля, железа, а также марганца. Наиболее широкое клиническое применение получили соединения гадолиния. Контрастирующий эффект гадолиния обусловлен укорочением времени релаксации Т1 и Т2. В низких дозах преобладает воздействие на Т1, увеличивающее интенсивность сигнала. В высоких дозах преобладает воздействие на Т2 со снижением интенсивности сигнала. Наиболее широкое распространение имеют парамагнитные внеклеточные МР-контрастные средства. Суперпарамагнитные контрастные средства. Суперпарамагнитный оксид железа – магнетит. Его доминирующим воздействием является укорочение релаксации Т2. С увеличением дозы происходит снижение интенсивности сигнала. Так же как в компьютерной томографии, пероральные контрастные средства используются при исследованиях органов брюшной полости, чтобы дифференцировать кишечник и нормальные или патологические ткани. Магнетит (Fe3O4) – применяется при исследованиях желудочно-кишечного тракта. Это суперпарамагнитное вещество с преимущественным действием на Т2 релаксацию. Действует как негативное контрастное средство, т.е. снижает интенсивность сигнала.

3 .=Пациентам с установленным водителем ритма или с внутриглазничн. ферромагнитными инородными телами и с сосудистыми клипсами из ферромагнитных материалов. =Реанимац. больным из-за воздействия маг. полей МР-томографа на системы жизнеобеспечения. =Пациентам с клаустрофобией. =Женщинам в первой трети беременности.

Также МРТ противопоказана (или время обследования должно быть значительно сокращено) при наличии татуировок, выполненных с помощью красителей с содержанием металлических соединений. наличие татуировок, выполненных с помощью красителей на основе соединений титана, протезов внутреннего уха. МРТ противопоказана при некоторых видах протезов внутреннего уха, так как в кохлеарном импланте есть металлические части, которые содержат ферромагнитные материалы.

БИЛЕТ № 5

  1. Основы получения рентгеновского изображения и его особенности.

  2. Принципы радиационной безопасности в медицинской радиологии.

  3. Источники электромагнитных ионизирующих излучений для лучевой терапии.

1 . Для получения рентг. изображения используют рентгеновские трубки, которые генерируют ренген. лучи.

Они проходят сквозь обьект, и часть их может задерживаться тканями, а часть проникает дальше, и , попадая на экран, вызывают его свечение. Это свечение не одинаково во всех точках, а зависит от плотности ткани, через которую они проходят, чем плотнее ткань, тем меньше свечение. Рентген. изобр. может быть негативным и позитивным. Например: в негативном изображении кости – светлые,воздух- тёмный, в позитивном – наоборот. И там, где излучение задерживается больше, формируются участки затемнения; где меньше – просветления.

Особенностями теневого рентгеновского изображения является: 1)Изображение, складывающееся из многих темных и светлых участков – соответственно областям неодинакового ослабления рентгеновых лучей в разных частях объекта. 2)Размеры рентгеновского изображения всегда увеличены (кроме КТ) по сравнению с изучаемым объектом, и тем больше, чем дальше объект находится от пленки, и чем меньше фокусное расстояние. 3)Когда объект и пленка не в параллельных плоскостях, изображение искажается. 4)Изображение суммационное (кроме томографии). Поэтому рентгеновские снимки должны быть произведены не менее, чем в двух взаимно перпендикулярных проекциях. 5)Негативное изображение при рентгенографии и КТ.

2 . По степени радиационной опасности методы лучевого лечения можно расположить в следующем порядке: внутриполостная терапия с помощью традиционных методов введения радиоактивных препаратов, терапия с помощью шланговых аппаратов и дистанционная терапия.

Помещения для дистанционной лучевой терапии располагаются в отдельных зданиях или в изолированных частях лечебных корпусов. Из зала облучения во время сеанса удаляются все лица, кроме больного. Пульт управления выносится в смежное помещение, и связь с больным во время процедуры облучения поддерживается по телефону и с помощью замкнутой телевизионной системы. Вход в помещение, где находится мегавольтный источник или гамма-аппарат, выполняется в виде лабиринта. При контактной лучевой терапии радиационная опасность для персонала заключается во внешнем облучении потоками гамма-квантов и бета-частиц (аппликаторы), что возможно на всех этапах работы с источниками. Радиационная безопасность при работе с закрытыми источниками гамма-бета-излучения реализуется двумя параллельными путями: применением защитных экранов, смотровых окон, дистанционных инструментов и правильной организацией работы, обеспечивающей минимальные затраты времени на проведение каждого этапа. Переход от ручных манипуляций к максимально возможной автоматизации процессов перемещения и обработки радиоактивных препаратов значительно повышает радиационную безопасность при проведении контактной лучевой терапии. Для защиты персонала, осуществляющего аппликационную бета-терапию, применяются комбинированные экраны из легких (оргстекло, алюминий) и тяжелых (железо, свинец) материалов. Легкие материалы поглощают потоки бета-частиц, а возникающее при этом тормозное излучение ослабляется в тяжелых материалах второго слоя. Помимо применения комбинированных экранов, рекомендуется использовать защитные перчатки, дистанционные инструменты и защитные очки.

3 .Источники электромагнитных ионизирующих излучений для лучевой терапии Ионизирующие излучения принято делить на излучения электромагнитной природы и корпускулярное. К электромагнитным относятся рентгеновское излучение и гамма-излучение. Это потоки квантов, не имеющих заряда, энергия которых определяется их частотой или длиной волны. Скорость распространения в вакууме обоих видов излучений равна скорости света. Источниками излучений электромагнитной и корпускулярной природы являются радиоактивные изотопы и аппараты — генераторы различного рода ионизирующих излучений. В настоящее время при лучевой терапии больных злокачественными опухолями применяют различные аппараты — источники излучения. Среди них наибольшее распространение получили гамма-установки. Для гамма-установок могут быть использованы различные изотопы, однако преимущества имеют изотопы с большим периодом полураспада, гомогенным излучением, большой энергией и большой удельной активностью. Отечественная промышленность выпускает различные конструкции гамма-установок.

БИЛЕТ № 6

  1. Получение и использование рентгеновских лучей. Рентгенодиагностический аппарат, его основные части.

  2. Критические постлучевые процессы в клетках и тканях организма человека.

  3. Дозиметрическая оценка поглощенной энергии излучения в теле человека при лучевой терапии быстрыми электронами

1 В 1895г.нем.физик Рентген открыл лучи. Назвал их Х-лучами. В наст. время в мед. с помощью рентг.лучей получ. около 90%всех визуализируемых изображений. Рентг.излуч. получают на высоковольтных электрич. установках. Источником рентг. излуч. явл. рентг. трубка, закреплённая в штативном устройстве рентген.аппарата.Состоит из катода и анода, стеклян. колбы. Пучок излучения пропускают ч/з исслед. асть тела. В качестве приёмника излучения использ. приборы,к от. трансформируют энергию неоднородн. рентгеновск. пучка. Простейш. приёмник- флюоресцентн. экран для просвечивания. Он покрыт спец.составом,а поверх просвинцован стеклом (для защиты врача).Колба рентген. трубки сост. из прочного стекла способного пропуск. рентг. лучи (внутри её вакуум,что позволяет получать рентген. лучи)

Рентгенодиагностический аппарат, его основные части Как и любую систему передачи информации, систему лучевой диагностики можно представить в виде пространственно-временного фильтра, составленного из нескольких каскадов:1.Каскада генерации излучения (рентгеновская трубка, радионуклид, пьезоэлектрический кристалл, источник радиоволн в магнитном поле);2.Каскада модуляции, который представляется пространственно-временной неравномерностью исследуемого объекта;3.Каскада детектирования (канала регистрации лучевого изображения);4.Каскада преобразования в световое изображение и его диагностической оценки.

2 Среди многих проявлений действия излучения на жизнедеятельность клетки подавление способности к делению является наиболее важным. Именно ядро играет роль хранителя наследственной информации самой клетки, всего организма и даже биологического вида, передает эту информацию от клетки к клетке, от организма к организму, обеспечивая преемственную связь поколений. Эта информация зашифрована в особых палочкоядерных структурах, выявляющихся при делении клетки благодаря способности хорошо накапливать специальные красители и потому называемых хромосомами.

Гибель клеток может возникать в широком временном диапазоне: часов-лет. По механизму лучевого поражения клеток следует различать две основные формы гибели: интерфазную (не связанную с митозом) и репродуктивную – гибель при попытке разделиться. Первая форма наблюдается при самых различных воздействиях на клетку, вторая – типичная для ионизирующей радиации и других мутагенных агентов.

Радиобиологи различают два основных типа лучевых повреждений ДНК: сублетальные и потенциально летальные повреждения. Первый – это такие вызванные радиацией изменения, которые сами по себе не ведут к гибели клеток, но облегчают ее при продолжающемся или последующем облучении. Например, одиночные разрывы сами по себе не смертельны, но чем больше их возникает в молекуле ДНК, тем больше вероятность их совпадения и образования летального двойного разрыва. Второй тип – потенциально летальные повреждения – сами по себе вызывают гибель клетки, но все же в определенных условиях могут быть устранены репаративной системой.

Критич.внутриклеточ. стр-рами явл-ся хромосомы,сост. из нукл. кислот – хранителей наслед. информации и спец. белков. При косвенном действии иониз.излуч. образование своб. радикалов происходит при взаимод. белковых молекул с продуктами радиолиза воды. Образование своб. радикалов влечет за собой изменение стр-ры белка, что приводит к наруш. его функций (фермент., горм., рецепторн.) Критич. внутриклет. структурами при действии иониз. излуч. явл-ся мембраны: изменения в протеинах и липидах, могут повысить проницаемость мембран для различн.молекул.В лизосомах это ведет к выбросу каталитич. энзимов в клетку. Наруш. оболочки ядра может воздей.на деление клеток.По мех-му луч.пораж.клеток различают 2 осн. формы гибели:интерфазн. (не связ. с митозом) и репродуктивн. – гибель при попытке разделиться.В клетках вследствие накопл. в цитоплазме гидролитич. ферментов деградирует ДНК. При меньших дозах наблюдается репродукт.форма гибели, причиной кот. в большинстве случаев явл-ся структур.хромосомн.повреждения. Обломки хромосом могут соединяться неправильно. Возможно образование мостов м/у хроматидами – тогда клетка не может разделиться и гибнет. Различают 2 типа луч.поврежд. ДНК: сублетальные и потенциально летальные повреждения. 1-ый –изменения, кот.сами по себе не ведут к гибели клеток.2-ой тип –летальные повреждения –вызывают гибель клетки.В жиз. цикле клетки наибольшая радиочувствительность в процессе митоза. Дело в том, что деятельность систем внутриклеточного восстановления к началу митоза полностью прекращается, и все повреждения ДНК, оставшиеся нерепарированными, в проц. митоза фиксируются и либо приводят клетку к гибели, либо сохраняются в наслед. механизме клеток-потомков, снижая их жизнеспособность, и служат материалом для формирования мутаций. Во время митоза хромосомы концентрируются, что затрудняет доступ ферментов репарации к поврежденным участкам молекулы ДНК. Большинство клеток млекопитающих наиболее чувствительны к радиации в конце G1-фазы, перед началом синтеза ДНК и перед вступлением в митоз, в самом конце G2-фазы.Все фазы клеточного цикла одинаково уязвимы для высоких доз плотноионизирующих излучений.

3 Электронная терапия. Энергия электронов поглощается в тканях относительно равномерно на всем протяжении пробега этих частиц. Это означает, что весь слой тканей от кожи до зоны, в которой завершается поглощение моноэнергетического пучка электронов, облучается почти равномерно, а за пределами этой зоны наступает крутое падение дозы. Описанная закономерность не сохраняется у электронов с энергией свыше 10-15 МэВ, т.к. возникает квантовое излучение при торможении этих электронов в тканях. Дозиметрическая характеристика электронов высокой энергии указывает на целесообразность их применения при расположении патологического очага не глубже 5-7 см.

БИЛЕТ № 7

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]