
- •Министерство сельского хозяйства
- •Лекция 5. Гидролиз солей………………………………………………….72
- •Список литературы……………………………………………….159 Глоссарий
- •Программа дисциплины для студентов
- •5В120200 –ветеринарная санитария
- •Распределение учебного времени
- •6.Содержание курса
- •6.1 Перечень лекционных занятий
- •6.2 Перечень лабораторно-практических занятий
- •8.Список литературы.
- •Оценочные эквиваленты в десятибалльной шкале
- •1.Теоретические основы аналитической химии
- •Требования, предъявляемые к аналитическим реакциям.
- •Качественный химический анализ.
- •Типы химических реакций.
- •Качественный химический анализ. Аналитическая классификация катионов
- •Аналитическая классификация анионов
- •Лабораторная работа 1
- •1.Правила тб.
- •Весы и взвешивание
- •Лабораторная работа 2. Реакции катионов 1 группы
- •Лабораторная работа. Качественные реакции анионов 1-3 группы
- •Титриметрические методы анализа
- •Способы титрования.
- •Методы титриметрического анализа
- •Лабораторная работа 1. Определение кристаллизационной воды в кристаллогидрате хлорида (или сульфата) бария
- •Лабораторная работа 2. Ацидиметрическое титрование
- •Метод Мора
- •Метод Фольгарда
- •Лабораторная работа
- •Редоксиметрия. Окислительно - восстановительное титрование. Перманганатометрия.
- •Лабораторная работа
- •Иодометрия
- •Лабораторная работа
- •Комплексометрия
- •Лабораторная работа
- •Оптические методы анализа
- •Рефрактометрия
- •Лабораторная работа
- •Фотоэлектроколориметрия
- •Лабораторная работа
- •Лекция 4 скорость химических реакций. Химическое равновесие
- •Контрольные вопросы
- •Лабораторная работа
- •Опыт 4. Влияние катализатора на скорость реакции.
- •Лекция 5. Гидролиз солей
- •Лабораторная работа. Гидролиз солей
- •Контрольные вопросы:
- •Окислительно-восстановительные реакции
- •Затем определяем изменение степеней окисления атомов
- •Отсюда видно, что степень окисления изменяется у серы и марганца
- •Лабораторная работа. Окислительно-восстановительные реакции Опыт 1. Окислительные свойства kMnO4 в различных средах.
- •Лекция 6. Энергетика химических процессов. Элементы химической термодинамики.
- •Лабораторная работа
- •Лекция 7. Растворы неэлектролитов
- •Законы Рауля
- •Лабораторная работа Опыт 1. Приготовление пересыщенных растворов.
- •Объем заданного раствора –
- •Объяснение. Кристаллы гексацианоферрата калия, растворяясь в растворе, вступают во взаимодействие с сульфатом меди
- •Растворы электролитов
- •Контрольные вопросы
- •Лабораторная работа
- •Лекция 8. Ионное произведение воды. Буферные растворы
- •Контрольные вопросы
- •1.Объяснить, почему рН буферного раствора при добавлении небольших количеств кислоты или щелочи остается постоянным?
- •4.Как влияет разбавление на буферную емкость
- •Лабораторная работа
- •Лекция 9 электрохимические процессы. Электродные потенциалы металлов. Гальванические элементы
- •Е. Стеклянным
- •Е. Стекляным
- •Лабораторная работа
- •Опыт 3. Вытеснение водорода из кислоты металлами.
- •Лекция 10-11 Поверхностные явления. Адсорбция
- •Адсорбция ↔ десорбция
- •Адсорбция на границе твердое тело-газ.
- •2.Теория Фрейндлиха.
- •3.Полимолекулярная адсорбция.
- •Адсорбция на границе раздела раствор-газ. Уравнение Гиббса
- •Контрольные вопросы
- •Лабораторная работа
- •Лекция 12 коллоидные системы
- •Коллоидная защита
- •Лабораторная работа. Получение коллоидных систем
- •Лекции14-15 растворы высокомолекулярных соединений
- •Общие свойства растворов вмс и коллоидных растворов.
- •Отличительные свойства вмс от коллоидов.
- •Свойства растворов вмс
- •Лабораторная работа. Растворы вмс Опыт 1. Действие ряда анионов на застудневание желатина.
- •Банк экзаменационных тестовых вопросов
- •Список литературы
- •Учебно-методический комплекс «Аналитическая, физическая и коллоидная химия»
Метод Мора
Метод основан на том, что галиды (хлориды, бромиды, иодиды) с ионом серебра дают практически нерастворимый галид серебра, выпадающий в осадок. Рабочий титрованный раствор - раствор AgNO3. Для определения конца реакции пользуются хроматом калия К2Сг04. В этом случае протекают две реакции:
Cl-+Ag+=AgCl; CrO42-+2Ag+=Ag2CrO4
Обе получающиеся соли - AgCl и Ag2Cr04 - трудно растворы в воде, но при добавлении AgNO3 к раствору, содержащему, кроме ионов Сl-, также ионы СlO42- первоначально образуется AgCl и только потом, когда ионы Сl- практически полностью будут удалены из раствора, начинается образование Ag2CrO4. В этот момент цвет осадка начнет изменяться: из белого или желтого он будет переходить в [красноватый, по появлению которого и судят о том, что реакция между ионами Сl- и Ag+ закончилась. Такая последовательность образования осадков зависит от того, что AgCl менее растворим (1,25-10 г-экв/л), чем Ag2Cr04 (0,65-10 г-экв/л), и потому осаждается из раствора первым.
Применение метода Мора ограничено: точные результаты получаются только в нейтральной среде. В минеральных кислотах Ag2Cr04 растворяется и в их Присутствии выпадать не может. В присутствии щелочей метод Мора также не применим, так как в таких растворах ионы ОН- дают с ионами Ag+ бурый осадок Ag2O, который образуется вследствие распада получающейся неустойчивой гидрида серебра:
2Ag++2OH =Ag2O+H2O
В аммиачной среде осадки AgCl и Ag2Cr04 растворяются, что обусловлено образованием комплексных аммиачно-серебряных солей. Не применим этот метод также в присутствии ионов Ba2+, Pb2+ и всех остальных ионов, которые дают не растворимые в воде осадки с ионами CrO42-.
Титрование по Мору следует производить при комнатной температуре, так как с повышением температуры увеличивается произведение растворимости Ag2CrO42-; вследствие этого уменьшается чувствительность индикатора к иону Ag+.
Метод Фольгарда
Метод основан на образовании не растворимого в воде роданида серебра AgCNS, имеющего белый цвет. В качестве рабочих титрованных растворов применяют раствор нитрата серебра AgNO3 и раствор роданида калия КCNS или аммония NН4CNS, применимым в нейтральной и кислой среде. Наличие в растворе свободной кислоты дает более точный результат. Конец осаждения определяют индикаторами. В качестве индикатора применяют железо – аммиачные квасцы NН4Fe(SO4)2∙12H2O, которые в виде насыщенного раствора прибавляются к титруемой жидкости. Протекает реакция:
Ag+ CNS= AgCNS
Как только реакция между ионами Ag и CNS заканчивается, следующая капля роданида калия вызывает образование роданида железа, который окрашивает жидкость в красный цвет
Fe + 3CNS= Fe(CNS)3
Для приготовления железо-аммиачных квасцов, нагревают насыщенный раствор, дают раствору охладится, затем фильтруют. К профильтрованной жидкости прибавляют концентрированную азотную кислоту до тех пор , пока она не станет бесцветной.
Лабораторная работа
Опыт 1 . Определение хлорида натрия по Мору.
Выполнение работы. На аналитических весах точно отвесить 1,4598г хлорида натрия (на 250 мл воды). Навеску перенести в мерную колбу растворить навеску в дистиллированной воде и довести до 250 мл. Отмерить пипеткой 20мл приготовленного раствора, прибавить 0,5 мл 5% раствора КCr04 и титровать из бюретки рабочим раствором AgNO3. По результатам титрования вычислить процентное содержание соли в пробе.
Определить нормальность приготовленного раствора хлорида натрия:
N NaCl=V AgNO3∙ N AgNO3 / V NaCl , экв/л.
Содержание в навеске определяем по формуле:
Qнайдено=М NaCl ∙N NaCl ∙Vколб/ 1000
W% NaCl = Qнайдено ∙100/Qисх
Опыт 2. Определение хлорида натрия по Фольгарду
Выполнение работы. На аналитических весах точно отвесить навеску NaCl (m1=0,5798г) таким образом, чтобы получился 0,1н раствор. Из приготовленного раствора взять 25 мл, перенести в коническую колбу на 200мл и прилить из бюретки точно отмеренный объем титрованного раствора AgNO3. Объем раствора АgNO3 должен быть в 2 раза больше, чем нужно для полного осаждения ионов Cl-. Образуется осадок AgCl, а некоторая часть AgNO3 остается в свободном состоянии. Колбу с мутной жидкостью сильно встряхивают до тех пор пока AgCl не свернется, образуя комки и не осядет на дно. Жидкость становится прозрачной. Прибавляют 2-3 мл железо –аммиачных квасцов и оттитровывают избыток нитрата серебра NН4CNS до появления красноватого окрашивания не исчезающего при сильном взбалтывании. Расчет проводят по формулам. V1 AgNO3–объем прилитого раствора AgNO3
V2 AgNO3= V NН4CNS∙ N NН4CNS/ N AgNO3, экв/л.
N NaCl= (V1 AgNO3– V2 AgNO3) ∙ N AgNO3
m2 NaCl=Э NaCl ∙ N NaCl∙100/1000, (m2 NaCl/ m1 NaCl) ∙100%