
- •Лабораторна робота № 45 визначення індукції магнітного поля за допомогою терезів ампера
- •1. Магнітне поле. Індукція магнітного поля . Силові лінії магнітного поля. Потік вектора індукції магнітного поля (магнітний потік).
- •2. Дія магнітного поля на провідник з струмом. Сила ампера
- •3. Терези ампера та методика визначення індукції магнітного поля
- •4. Послідовність виконання роботи
- •5. Обробка експериментальних даних
- •Лабораторна робота № 46 визначення горизонтальної складової напруженості магнітного поля землі
- •1. Магнітне поле та його характеристики
- •2. Елементи земного магнетизму
- •3. Методика експериментального визначення горизонтальної складової напруженості магнітного поля землі
- •4. Послідовність виконання роботи
- •Лабораторна робота №47. Визначення питомого заряду електрона
- •1. Магнітне поле. Дія магнітного поля на рухомий заряд. Сила лоренца
- •2. Рух заряджених частинок в магнітному полі.
- •3. Практичне значення руху заряджених частинок в магнітному полі
- •4. Методика експериментального визначененя питомого заряду електрона
- •5. Послідовність виконання роботи
- •Лабораторна робота №49 визначення точки кюрі феромагнетиків
- •2. Діамагнетики, парамагнетики і феромагнетики
- •3. Природа феромагнетизму
- •4. Точка кюрі для феромагнетиків. Фазовий перехід іі роду
- •5. Експериментальне визначення точки кюрі феромагнетиків
- •6. Послідовність виконання роботи.
- •3. Природа феромагнетизму. Намагніченість феромагнетиків. Крива намагнічення
- •4. Магнітний гістерезис. Петля гістерезису
- •5. Методика експериментального методу зняття петлі гістерезису за допомогою осцилографа
- •6. Послідовність виконання роботи
- •7. Розрахунок залишкового намагнічення та коерцитивної сили досліджуваного феромагнетика
- •8. Додаткове завдання: визначення магнітної проникності досліджуваного феромагнетика
- •9. Застосування феромагнітних матеріалів
- •Лабораторна робота № 53 вивчення роботи релаксаційного генератора
- •1. Поняття про релаксаційні коливання.
- •2. Струм в газах. Види газових розрядів.
- •3. Релаксаційний генератор на неоновій лампі.
- •4. Принцип експериментального методу.
- •5. Оцінка похибок експерименту.
- •6. Послідовність виконання роботи.
- •7. Додаткове завдання 1.
- •8. Додаткове завдання 2.
- •Лабораторна робота № 54 визначення індуктивності соленоїда та ємності конденсатора методом вимірювання їх реактивних опорів у колі змінного струму
- •1. Змінний електричний струм
- •2. Активний опір в колі змінного струму
- •4. Індуктивність у колі змінного струму
- •5. Активний опір, індуктивність та ємність у колі змінного струму
- •6. Принцип експериментального визначення ємності конденсатора методом вимірювання його реактивного опору.
- •7. Визначення індуктивності соленоїда
- •8. Похибки методу
- •9. Послідовність виконання роботи
- •9. Приклади технічного застосування індуктивного та ємнісного опорів.
- •10. Контрольні питання
- •Лабораторна робота № 55 вивчення резонансу в електричному коливальному контурі
- •1. Електричний коливальний контур. Вільні незатухаючі коливання
- •2. Вільні затухаючі коливання в контурі
- •3. Вимушені коливання в контурі. Явище резонансу
- •4. Послідовність виконання роботи
- •Контрольні питання
- •Лабораторна робота № 60 визначення довжини електромагнітної хвилі за допомогою двопровідної лінії
- •1. Основи теорії максвелла
- •2. Електромагнітні хвилі.
- •3. Стояча електромагнітна хвиля.
- •4. Експериментальне дослідження стоячих електромагнітних хвиль.
- •5. Послідовність виконання лабораторної роботи.
- •6 .Випромінювання і прийом електромагнітних хвиль. Передача інформації за допомогою електромагнітних хвиль.
- •Контрольні питання.
- •Перелік використаних джерел
5. Методика експериментального методу зняття петлі гістерезису за допомогою осцилографа
На рис. 50.6 наведена принципова схема лабораторної установки для зняття петлі гістерезису за допомогою електронного осцилографа. Досліджуваний феромагнетик являє собою тороїд (кільце) з двома обмотками: І - первинна; ІІ - вторинна.
Від
ЛАТРа (лабораторного автотрансформатора)
через первинну обмотку тороїда пропускають
змінний струм, який створює в феромагнетику
намагнічуюче поле напруженістюН(50.8), деІ- сила струму;N- число
витків первинної обмотки;l2- її довжина.
Згідно закону Ома при силі струму І напругаUxна кінцях резистораRрівна (50.9) і тоді, як випливає з (50.8), ця напруга буде пропорційна напруженостіНнамагнічуючого поля (50.10). Це змінне магнітне поле (струм змінний) індукує у вторинній обмотці тороїда електрорушійну силу ЕРС, яка згідно закону електромагнітної індукції пропорційна швидкості зміни магнітного потоку (50.11). Магнітний потік через витки вторинної обмотки дорівнює (50.12), деN2- число витків обмотки;S- площа поперечного перерізу обмотки (тут це площа поперечного перерізу тороїда, на який намотана обмотка);В- індукція магнітного поля.
(50.8)
(50.9)
(50.10)
(50.11)
(50.12)
(50.13)
(50.14)
З
(50.11) і (50.12) отримаємо рівняння (50.13), де
значення індукції В магнітного поля
входить під знак диференціала. Для того,
щоб отримати електричний сигнал, який
пропорційний індукції, використовують
електричну схему з резистора R2та конденсатораС(рис.50.6). Така
електрична схема називається інтегруючим
ланцюжком, де аналогом математичного
інтегрування розв'язку рівняння (50.13) є
накопичення (сумування) заряду на
обкладинках конденсатора. На вхід такого
ланцюжка подається диференціальна
величина,
а на виході отримуємо напругу (50.14), яка
пропорційнаВ.
Для того, щоб отримати петлю гістерезису, використовують електричний осцилограф. На одну пару пластин (відхилення по горизонталі - вхід «Х») подають напругу Ux, яка пропорційна напруженостіНнамагнічуючого поля. На другу пару пластин (відхилення по вертикалі - вхід «Y») подають напругуUy, яка пропорційна індукції В магнітного поля в досліджуваному феромагнетику. Електронний промінь, здійснюючи такі зміщення у взаємно перпендикулярних напрямах, опише на екрані залежністьВвідН. За один період змінного струму електронний промінь опише повну петлю гістерезису, а за кожний наступний повторить її. Тобто на екрані осцилографа буде видна нерухома петля гістерезису даного феромагнетика.
Координати точок отриманої петлі визначають за міліметровими поділками шкали на екрані осцилографа. При розрахунках магнітних властивостей феромагнетика необхідно від поділок шкали в міліметрах перейти до відповідних магнітних величин (ВтаН). Для цього зручно скористуватись чутливістю осцилографа. Для горизонтально відхиляючих - (50.16), де Х - зміщення променя по горизонталі; Y - по вертикалі при відповідних напругахUx іUy. Вимірявши в міліметрах на екрані осцилографа координати X і Y точок петлі гістерезису, з (50.15) і (50.16) та (50.10) і (50.14) отримаємо відповідні значення напруженостіН(50.17) намагнічуючого поля та індукціїВ(50.18) поля в феромагнетику.
(50.15)
(50.16)
(50.17)
(50.18)