
- •Лабораторна робота № 45 визначення індукції магнітного поля за допомогою терезів ампера
- •1. Магнітне поле. Індукція магнітного поля . Силові лінії магнітного поля. Потік вектора індукції магнітного поля (магнітний потік).
- •2. Дія магнітного поля на провідник з струмом. Сила ампера
- •3. Терези ампера та методика визначення індукції магнітного поля
- •4. Послідовність виконання роботи
- •5. Обробка експериментальних даних
- •Лабораторна робота № 46 визначення горизонтальної складової напруженості магнітного поля землі
- •1. Магнітне поле та його характеристики
- •2. Елементи земного магнетизму
- •3. Методика експериментального визначення горизонтальної складової напруженості магнітного поля землі
- •4. Послідовність виконання роботи
- •Лабораторна робота №47. Визначення питомого заряду електрона
- •1. Магнітне поле. Дія магнітного поля на рухомий заряд. Сила лоренца
- •2. Рух заряджених частинок в магнітному полі.
- •3. Практичне значення руху заряджених частинок в магнітному полі
- •4. Методика експериментального визначененя питомого заряду електрона
- •5. Послідовність виконання роботи
- •Лабораторна робота №49 визначення точки кюрі феромагнетиків
- •2. Діамагнетики, парамагнетики і феромагнетики
- •3. Природа феромагнетизму
- •4. Точка кюрі для феромагнетиків. Фазовий перехід іі роду
- •5. Експериментальне визначення точки кюрі феромагнетиків
- •6. Послідовність виконання роботи.
- •3. Природа феромагнетизму. Намагніченість феромагнетиків. Крива намагнічення
- •4. Магнітний гістерезис. Петля гістерезису
- •5. Методика експериментального методу зняття петлі гістерезису за допомогою осцилографа
- •6. Послідовність виконання роботи
- •7. Розрахунок залишкового намагнічення та коерцитивної сили досліджуваного феромагнетика
- •8. Додаткове завдання: визначення магнітної проникності досліджуваного феромагнетика
- •9. Застосування феромагнітних матеріалів
- •Лабораторна робота № 53 вивчення роботи релаксаційного генератора
- •1. Поняття про релаксаційні коливання.
- •2. Струм в газах. Види газових розрядів.
- •3. Релаксаційний генератор на неоновій лампі.
- •4. Принцип експериментального методу.
- •5. Оцінка похибок експерименту.
- •6. Послідовність виконання роботи.
- •7. Додаткове завдання 1.
- •8. Додаткове завдання 2.
- •Лабораторна робота № 54 визначення індуктивності соленоїда та ємності конденсатора методом вимірювання їх реактивних опорів у колі змінного струму
- •1. Змінний електричний струм
- •2. Активний опір в колі змінного струму
- •4. Індуктивність у колі змінного струму
- •5. Активний опір, індуктивність та ємність у колі змінного струму
- •6. Принцип експериментального визначення ємності конденсатора методом вимірювання його реактивного опору.
- •7. Визначення індуктивності соленоїда
- •8. Похибки методу
- •9. Послідовність виконання роботи
- •9. Приклади технічного застосування індуктивного та ємнісного опорів.
- •10. Контрольні питання
- •Лабораторна робота № 55 вивчення резонансу в електричному коливальному контурі
- •1. Електричний коливальний контур. Вільні незатухаючі коливання
- •2. Вільні затухаючі коливання в контурі
- •3. Вимушені коливання в контурі. Явище резонансу
- •4. Послідовність виконання роботи
- •Контрольні питання
- •Лабораторна робота № 60 визначення довжини електромагнітної хвилі за допомогою двопровідної лінії
- •1. Основи теорії максвелла
- •2. Електромагнітні хвилі.
- •3. Стояча електромагнітна хвиля.
- •4. Експериментальне дослідження стоячих електромагнітних хвиль.
- •5. Послідовність виконання лабораторної роботи.
- •6 .Випромінювання і прийом електромагнітних хвиль. Передача інформації за допомогою електромагнітних хвиль.
- •Контрольні питання.
- •Перелік використаних джерел
2. Діамагнетики, парамагнетики і феромагнетики
В залежності від значень магнітної сприятливості або магнітної проникності речовини за своїми магнітними властивостями діляться на три основні групи.
а) Діамагнетики,для яких магнітна сприятливість від'ємна і дуже мала за абсолютним значенням (порядку 10-4- 10-6). Це значить, що в діамагнетиках виникає дуже слабе намагнічення, яке має напрям протилежний зовнішньому полю. Згідно (49.5) для діамагнетиків<1.
Діамагнітними властивостями володіють азот, вода, срібло та ряд органічних сполук, наприклад вуглеводні нафти.
б) Парамагнетики, в яких магнітна сприятливість додатна, але теж мала за абсолютним значенням (10-3– 10-6). В парамагнетиків виникає слабе намагнічення в напрямі зовнішнього намагнічуючого поля. Для парамагнетиків>1.
До парамагнетиків відноситься кисень, алюміній, платина та ряд рідкоземельних елементів.
в) Феромагнетики,для яких магнітна сприятливість додатна і приймає великі значення (103– 105). Відповідно такого ж порядку буде і магнітна проникність, тобто>>1. В першу чергу феромагнітними властивостями володіє залізо (звідси і назва “феромагнетик” -Fe). До феромагнетиків відноситься ряд інших елементів: нікель, кобальт, гадоліній та окремі сплави. Для феромагнетиків магнітна сприйнятливість залежить від напруженості магнітного поля та температури.
3. Природа феромагнетизму
Ряд
магнітних властивостей феромагнетиків
було встановлено ще в минулому столітті,
але розуміння цих властивостей дає лише
сучасна квантова фізика.
Особливі властивості феромагнетиків зумовлені наявністю в них областей спонтанного (самовільного) намагнічення, які отримали назву доменів (від французького - володіння). Домени мають розміри порядку 10-2– 10-3мм, в яких величезна кількість спінових магнітних моментів електронів строго орієнтованими в одному напрямі і причиною цього є квантові ефекти. В спонтанній орієнтації спінових моментів електронів основну роль відіграють особливі взаємодії, які в квантовій механіці називається обмінними. Обмінна взаємодія приводить до того, що в феромагнетиках енергетично вигідним є стан, при якому спіни електронів в незаповнених оболонках сусідніх атомів є паралельними в зв'язку з чим і виникає спонтанне намагнічення. Напрям спонтанного намагнічення визначається внутрішньою будовою феромагнетика. Наприклад, чисте залізо має внутрішню будову з об’ємноцентрових кубічних кристалічних решіток (рис. 49.2). Встановлено, що в такому залізі вісями найбільш легкого намагнічення є вісі куба. Це значить, що спінові магнітні моменти електронів можуть орієнтуватись в одному з шести напрямів:X;Y;Z, ці напрямки мають “перевагу” над іншими можливими напрямами в кристалі заліза.
Спрощено
механізм виникнення самих доменів можна
пояснити таким чином. Нехай весь
феромагнетик являє собою один великий
домен, в якому внаслідок обмінної
взаємодії всі спінові магнітні моменти
орієнтувались в одному напрямі вздовж
“найлегшого” намагнічення, наприклад
вздовж вісі Y (рис. 49.3а). Такий великий
домен по суті, являє собою постійний
магніт і в зовнішньому просторі існує
магнітне поле, яке володіє певною
енергією.
Відомо, що будь-яка система намагається зайняти стан з мінімальною енергією. Тому, якщо даний феромагнетик буде являти собою сукупність двох доменів з протилежними напрямами намагнічення (рис. 49.3б), то зовнішнє магнітне поле буде меншим, відповідно такий стан феромагнетика буде більш енергетично вигідним, ніж попередній. На (рис. 49.3в) вказаний такий випадок, коли взагалі зовнішнє магнітне поле відсутнє. Тут феромагнетик “розбився” на такі окремі домени, де їх магнітні поля замикаються і даний стан феромагнетика стає найбільш енергетично вигідним.
Існування доменів в феромагнетиках експериментально доведено різними дослідами. Наприклад, один з методів полягає в утворенні порошкових структур. Так, якщо на відполіровану поверхню феромагнетика нанести шар рідини, в якій знаходиться надзвичайно дрібні крупинки феромагнітного порошку Fe2O3, то ці крупинки, притягуючись доменами, “вирисовують” їх границі. Так порошкові фігури можна спостерігати в мікроскоп навіть при невеликому збільшенні (в сто разів).