
- •Конспект лекций
- •3.1. Термодинамика
- •3.1.1. Содержание и метод термодинамики
- •3.1.2. Основные понятия термодинамики
- •3.1.3. Газовые смеси
- •3.1.4. Законы идеальных газов
- •3.1.5. Первое начало термодинамики
- •3.1.5.1. Первое начало термодинамики как математическое выражение закона сохранения энергии
- •3.1.5.2. Первое начало термодинамики простого тела
- •3.1.6. Понятие теплоёмкости
- •3.1.7. Первое начало термодинамики для идеальных газов
- •3.1.7.1. Закон Майера
- •8314 Дж/(кмольк).
- •3.1.7.2. Принцип существования энтропии идеального газа
- •3.1.8. Термодинамические процессы
- •3.1.8.1. Классификация термодинамических процессов
- •3.1.8.2. Работа в термодинамических процессах
- •3.1.9. Круговые процессы (циклы)
- •3.1.9.1. Тепловые машины, понятие термического к.П.Д.,
- •3.1.9.2. Цикл Карно
- •3.1.10. Второе начало термодинамики
- •3.1.11. Термодинамические циклы двигателей внутреннего сгорания
- •3.1.11.1. Циклы поршневых двигателей внутреннего сгорания
- •3.1.11.2. Циклы газотурбинных установок
- •3.1.12. Типовые задачи к разделам курса «термодинамика»
- •3.1.12.1. Параметры, уравнение состояния идеального газа
- •3.1.12.2. Газовые смеси
- •3.1.12.3. Первое начало термодинамики
- •3.1.12.4. Процессы изменения состояния вещества
- •3.1.12.5. Термодинамические циклы
- •4.1.Теплопередача
- •4.1.1. Теплопередача, её предмет и метод, формы передачи теплоты
- •4.2. Теплопроводность
- •4.2.1. Температурное поле
- •4.2.2. Температурный градиент
- •4.2.3. Тепловой поток. Закон Фурье
- •4.2.4. Коэффициент теплопроводности
- •4.2.5. Дифференциальные уравнения теплопроводности
- •4.2.6. Условия однозначности для процессов теплопроводности
- •4.2.7. Отдельные задачи теплопроводности при стационарном режиме
- •4.3. Конвективный теплообмен
- •4.3.1. Основные понятия и определения
- •4.3.2. Теория размерностей
- •Размерности и показатели степени при конвективном теплообмене
- •4.3.3. Теория подобия
- •4.3.4. Критериальные уравнения
- •4.3.5. Некоторые случаи теплообмена
- •4.3.6. Расчетные зависимости конвективного теплообмена
- •4.3.7. Теплообмен при естественной конвекции
- •4.3.8. Теплоотдача при вынужденном движении жидкости в трубах и каналах
- •4.3.9. Теплоотдача при поперечном обтекании труб
- •4.4. Тепловое излучение
- •4.4.1. Основные понятия и определения
- •4.4.2. Виды лучистых потоков
- •4.4.3. Законы теплового излучения
- •4.4.4. Особенности излучения паров и реальных газов
- •4.5. Теплопередача
- •4.5.1. Теплопередача между двумя теплоносителями через разделяющую их стенку
- •4.5.2. Оптимизация (регулирование) процесса теплопередачи
- •4.5.3. Теплопередача при переменных температурах (расчет теплообменных аппаратов)
4.1.Теплопередача
4.1.1. Теплопередача, её предмет и метод, формы передачи теплоты
Наука, именуемая теплопередачей, изучает законы и формы распределения теплоты в пространстве. В отличие от термодинамики, которая имеет дело с количеством теплоты, теплопередача оперирует понятием тепловой поток, т. е. количеством тепла, отдаваемым или принимаемым телом в единицу времени. Если ни в одно из уравнений термодинамики время не входит, то в уравнениях теплопередачи время присутствует как в явной, так и в скрытой форме.
Под процессом переноса теплоты понимается обмен внутренней энергией между элементами системы в форме теплоты. Перенос теплоты осуществляется тремя основными видами — теплопроводностью, конвекцией и тепловым излучением, которые различаются между собой физической сущностью процесса переноса теплоты или, как говорят, механизмом теплообмена.
Теплопроводность представляет собой процесс переноса теплоты структурными частицами вещества — молекулами, атомами, электронами в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температуры, но механизм переноса теплоты зависит от вида агрегатного состояния вещества. Таким образом, теплопроводность — это молекулярный процесс передачи тепловой энергии (теплоты). В жидких и твердых телах (диэлектриках) перенос теплоты осуществляется путем упругих волн. В газообразных телах распространение теплоты происходит посредством диффузии молекул и атомов, а также за счет обмена энергией при соударении молекул. В металлах распространение теплоты происходит в основном в результате диффузии свободных электронов и упругих колебаний кристаллической решетки, причем последнее имеет второстепенное значение.
Под конвекцией понимают процесс переноса тепловой энергии при перемещении объемов жидкости или газа в пространстве из области с одной температурой в область — с другой. При этом перенос теплоты неразрывно связан с переносом самой среды. Конвекция возможна только в текучей среде и всегда сопровождается теплопроводностью.
Теплообмен излучением связан с переносом энергии фотонов с помощью электромагнитных волн, возникающих в результате сложных молекулярных и атомных возмущений. Этот вид теплообмена осуществляется последовательно в три этапа: внутренняя энергия нагретого тела преобразуется в энергию излучения, которая распространяется в пространстве и, поглощаясь поверхностью, переходит во внутреннюю тепловую энергию холодного тела.
В природе и технике процессы распространения теплоты — теплопроводность, конвекция и тепловое излучение — как правило, протекают совместно, сопровождая друг друга. Например, процесс передачи теплоты от поверхности к омывающей жидкости происходит совместно теплопроводностью и конвекцией, т. е. это сложный процесс теплообмена, который называется конвективным теплообменом или теплоотдачей.
В цилиндре двигателя имеют место все три формы теплопередачи. Передача теплоты от рабочих газов к стенкам цилиндра происходит как излучением, так и путем конвективного теплообмена. Через стенки цилиндра теплота передается теплопроводностью. От наружных стенок втулки и крышки к охлаждающей жидкости и от наружных стенок днища поршня к охлаждающему маслу теплота передается конвективным теплообменом, при воздушном охлаждении этих деталей — теплоотдачей и излучением.
В радиаторах масла и циркуляционной системе охлаждающей жидкости теплота передается теплоотдачей и теплопроводностью; от наружных стенок радиатора к воздуху — теплоотдачей и излучением. В различных деталях ДВС в процессе их работы формируются температурные поля, зависящие от условий выделения тепловой энергии в виде потерь и от условий отвода этой энергии от деталей ДВС. Это оказывает существенное влияние на прочность деталей и их долговечность. Таким образом, тепловые режимы всех агрегатов и узлов автомобиля в конечном итоге оказывают существенное влияние на эксплуатационные характеристики автотранспорта.
Огромное значение процессы теплообмена имеют при бурении скважин, разработке месторождений, транспорте углеводородов и в других областях техники.