Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Color Atlas of Physiology 2003 thieme

.pdf
Скачиваний:
110
Добавлен:
15.02.2016
Размер:
36.12 Mб
Скачать

stimuli (!p. 170), whereas the release of melatonin is subject to afferent neuron control (!p. 334).

Some of these hormones (e.g., angiotensin II) and tissue hormones or mediators exert paracrine effects within endocrine and exocrine glands, the stomach wall, other organs, and on inflammatory processes. Bradykinin (!pp. 214 and 236), histamine (!pp. 100 and 242), serotonin (5-hydroxytryptamine, !p. 102) and eicosanoids are members of this group.

Eicosanoids. Prostaglandins (PG), thromboxane (TX), leukotrienes and epoxyeicosatrienoates are eicosanoids (Greek ει!%σι = twenty [C atoms]) derived in humans from the fatty acid arachidonic acid (AA). (Prostaglandins derived from AA have the index number 2). AA occurs as an ester in the phospholipid layer of the cell membranes and is obtained from dietary sources (meat), synthesized from linoleic acid, an essential fatty acid, and released by phospholipase A2 (!p. 252).

Pathways of eicosanoid synthesis from arachidonic acid (AA):

1.Cyclooxygenase pathway: Cyclooxygenase (COX)-1

and COX-2 convert AA into PGG2, which gives rise to PGH2, the primary substance of the biologically active compounds PGE2, PGD2, PGF, PGI2 (prostacyclin) and TXA2. COX-1 and 2 are inhibited by nonsteroidal anti-inflammatory drugs (e.g., Aspirin!).

2.Lipoxygenase pathway: Leukotriene A4 is synthesized from AA (via the intermediate 5-HPETE = 5-hy- droperoxyeicosatetraenoate) by way of 5-lipoxy- genase (especially in neutrophilic granulocytes).

Leukotriene A4 is the parent substance of the leukotrienes C4, D4 and E4. The significance of 12lipoxygenase (especially in thrombocytes) is not yet clear, but 15-lipoxygenase is known to produce vasoactive lipoxins (LXA4, LXB4).

3.Cytochrome P450-epoxygenase produces epoxyeicosatrienoates (EpETrE = EE).

Typical effects of eicosanoids:

PGE2 dilates the bronchial and vascular musculature (and keeps the lumen of the fetal ductus arteriosus and foramen ovale open; !p. 220), stimulates intestinal and uterine contractions, protects the gastric mucosa (!p. 242), inhibits lipolysis, increases the glomerular filtration rate (GFR), plays a role in fever development (!p. 224), sensitizes nociceptive nerve endings (pain) and increases the

permeability of blood vessels (inflammation). PGD2 induces bronchoconstriction. PGI2 (prostacyclin) synthesized in the endothelium, is vasodilatory and inhibits platelet aggregation. TXA2, on the other hand, occurs in platelets, promotes platelet aggregation and acts as a vasoconstrictor (!p. 102). 11,12-EpETrE has a vasodilatory effect (= EDHF, !p. 214).

Hormones (h.) of the hypothalamus and pituitary

Name* Abbreviation/synonyme

Hypothalamus

The suffix “-liberin” denotes releasing

h. (RH) or factor (RF); “-statin” is used for releaseinhibiting h. (IH) or factors (IF)

Corticoliberin

Corticotropin RH, CRH, CRF

 

Gonadoliberin

Gonadotropin RH, Gn-RH; ICSH

 

Prolactostatin

Prolactin IH, PIH, PIF, dopamine

Hormones

Somatoliberin

Somatotropin RH, SRH, SRF,

 

GHRH, GRH

 

 

Somatostatin**

Somatotropin (growth h.) IH, SIH

 

Thyroliberin

Thyrotropin RH, TRH, TRF

 

 

 

Anterior lobe of the pituitary

 

Corticotropin

Adrenocorticotropic h. (ACTH)

 

Follitropin

Follicle-stimulating h. (FSH)

 

Lutropin

Luteinizing h. (LH), interstitial

 

 

cell-stimulating h. (ICSH)

 

Melanotropin

α-Melanocyte-stimulating h.

 

 

(α-MSH), α-melanocortin

 

Somatotropin

Somatotropic h. (STH), growth h.

 

 

(GH)

 

Thyrotropin

Thyroid stimulating h. (TSH)

 

Prolactin

PRL, lactogenic (mammotropic)

 

 

h.

 

 

 

Posterior lobe of the pituitary

 

Oxytocin

 

Adiuretin

Anti-diuretic h. ADH,

 

 

(arginine-) vasopressin (AVP)

 

 

 

 

** Names generally recommended by IUPAC-IUB Committee on Biochemical Nomenclature.

** Also synthesized in gastrointestinal organs, etc.

269

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

A. The hormones (simplified overview excluding tissue hormones)

 

 

 

Hypothalamus

Anterior pituitary

 

 

 

 

 

Peripheral sites of

 

 

 

 

 

 

 

 

 

 

hormone synthesis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FSH

 

 

 

 

 

 

Testes

 

 

 

 

 

 

 

Gn-RH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ovarian

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LH (ICSH)

 

 

 

 

 

 

follicles

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corpus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reproductionand

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

luteum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

control

 

PIH (= dopamine)

 

 

 

 

Prolactin (PRL)

 

 

 

 

 

 

Liver

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thyroid gland

 

 

 

 

 

 

 

TRH

 

 

 

 

 

 

 

TSH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(follicle cells)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hormones11

systemnervouscentralUnder

 

Somatostatin (SIH)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GH-RH (=SRH)

 

 

 

 

STH (=GH)

 

 

 

 

 

cortexAdrenal

 

Reticular zone

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Angiotensinogen

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(liver)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glomerular zone

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRH

 

 

 

 

 

 

 

ACTH

 

 

 

 

 

 

 

 

 

Fascicular zone

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Posterior

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pituitary

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Axoplasmic transport

ADH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Axoplasmic transport

Oxytocin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adrenal medulla

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stimulates release

 

control

 

 

 

 

 

 

 

Kidneys

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D cells

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paracrine:

 

Pancreas

 

 

 

 

 

 

Peptides

 

 

 

 

 

 

 

 

humoral

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A cells

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inhibits release

 

 

 

 

 

 

 

 

 

 

B cells

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glyco-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proteins

 

 

Affects

 

Under

 

 

 

 

 

 

 

Parathyroid gland

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steroids, etc.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Secretes

 

 

 

 

 

 

 

 

 

 

Thyroid, etc.:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C cells

 

 

 

 

 

 

Tyrosine

 

 

Effect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

derivatives

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

270

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

End-hormone

Functions (simplified)

Testosterone

Estrogens

Gestagens (progesterone)

Thyroxin (T4)

Deiodinization

Triiodothyronine (T3)

Somatomedins (IGF)

Angiotensin II

Mineralocorticoids

Per-

Glucocorticoids mis- sive

Androgens

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Epinephrine

 

 

 

 

 

 

 

 

 

(norepinephrine)

 

 

 

 

and others

 

 

 

 

 

 

 

 

 

 

 

 

Erythropoietin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calcitriol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Somatostatin (SIH)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glucagon

 

Antagonistic

 

 

 

 

 

 

 

 

Insulin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bloodCirculation,

 

 

 

Parathyroid hormone

 

 

 

 

 

 

andWater balancemineral

 

 

 

Maturation

Reproduction

 

Metabolism

 

 

 

 

 

Antagonistic

 

 

 

 

 

 

 

 

Calcitonin (CT)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 11.2 u. 11.3 Hormones

271

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

11 Hormones and Reproduction

272

Humoral Signals: Control and Effects

Hormones and other humoral signals function to provide feedback control, a mechanism in which the response to a signal feeds back on the signal generator (e.g., endocrine gland). The speed at which control measures are implemented depends on the rate at which the signal substance is broken down—the quicker the degradation process, the faster and more flexible the control.

In negative feedback control, the response to a feedback signal opposes the original signal. In the example shown in A1, a rise in plasma cortisol in response to the release of corticoliberin (corticotropin-releasing hormone, CRH) from the hypothalamus leads to down-regulation of the signal cascade “CRH ! ACTH ! adrenal cortex,” resulting in a decrease in cortisol secretion. In shorter feedback loops, ACTH can also negatively feed back on the hypothalamus ( !A2), and cortisol, the end-hormone, can negatively feed back on the anterior pituitary (!A3). In some cases, the metabolic parameter regulated by a hormone (e.g., plasma glucose concentration) rather then the hormone itself represents the feedback signal. In the example (!B), glucagon increases blood glucose levels (while insulin decreases them), which in turn inhibits the secretion of glucagon (and stimulates that of insulin). Neuronal signals can also serve as feedback (neuroendocrine feedback) used, for example, to regulate plasma osmolality (!p. 170).

In positive feedback control, the response to the feedback amplifies the original signal and heightens the overall response (e.g., in autocrine regulation; see below).

The higher hormone not only controls the synthesis and excretion of the end-hormone, but also controls the growth of peripheral endocrine gland. If, for example, the end-hor- mone concentration in the blood is too low despite maximum synthesis and secretion of the existing endocrine cells, the gland will enlarge to increase end-hormone production. This type of compensatory hypertrophy is observed for instance in goiter development (!p. 288) and can also occur after surgical excision of part of the gland.

Therapeutic administration of a hormone (e.g., cortisone, a cortisol substitute) have the same effect on higher hormone secretion (ACTH and CRH in the example) as that of the end-hormone (cortisol in the example) normally secreted by the peripheral gland (adrenal cortex in this case). Long-term administration of an end-hormone would therefore lead to inhibition and atrophy of the endocrine gland or cells that normally produce that hormone. This is known as compensatory atrophy.

A rebound effect can occur if secretion of the higher hormone (e.g., ACTH) is temporarily elevated after discontinuation of end-hor- mone administration.

The principal functions of endocrine hormones, paracrine hormones and other humoral transmitter substances are to control and regulate:

enzyme activity by altering the conformation (allosterism) or inhibiting/stimulating the synthesis of the enzyme (induction);

transport processes, e.g., by changing the rate of insertion and synthesis of ion channels/ carriers or by changing their opening probability or affinity;

growth (see above), i.e., increasing the rate of mitosis (proliferation), “programmed cell death” (apoptosis) or through cell differentiation or dedifferentiation;

secretion of other hormones. Regulation can occur via endocrine pathways (e.g., ACTH-me- diated cortisol secretion; !A5), a short portal vein-like circuit within the organ (e.g., effect of CRH on ACTH secretion, !A4), or the effect of cortisol from the adrenal cortex on the synthesis of epinephrine in the adrenal medulla, (!A6), or via paracrine pathways (e.g., the effect of somatostatin, SIH, on the secretion of insulin and glucagon; !B).

Cells that have receptors for their own humoral signals transmit autocrine signals that function to

exert negative feedback control on a target cell, e.g., to discontinue secretion of a transmitter (e.g., norepinephrine; !p. 84);

coordinate cells of the same type (e.g., in growth);

exert positive feedback control on the secreting cell or to cells of the same type. These mechanisms serve to amplify weak signals as is observed in the eicosanoid secretion or in T cell clonal expansion (!p. 96ff.).

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

A. Regulation of cortisol and epinephrine concentrations in plasma

 

 

 

 

 

 

Limbic system

 

 

Effects

 

Medial/rostral

 

Lateral

Autonomic

 

 

hypothalamus

hypothalamus

centers

Signal generator

and

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypothalamic

 

 

Control

 

2

 

 

 

 

 

 

 

neurosecretion

 

 

 

 

 

 

ADH

 

 

 

 

 

CRH

 

 

Signals:

 

 

 

 

Sympathetic

 

feedback

 

 

 

 

Humoral

Anterior

 

 

nervous system

 

pituitary

4

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

Negative

 

 

 

 

 

Plate 11.4

 

ACTH

 

 

 

 

 

 

 

 

 

 

 

 

5

 

Adrenal

 

 

 

 

Adrenal

 

medulla

 

 

 

 

cortex

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

Cortisol

Epinephrine

 

Response to signal

 

 

 

 

(hormone release)

 

 

 

(norepinephrine)

 

 

B. Control of blood glucose

 

 

 

 

 

Insulin

 

Glucose supply

Glucagon

 

 

 

 

 

Liver

 

SIH

 

 

 

 

 

Pancreas

D

B

 

A

 

cells

 

cells

Ingested

cells

 

 

 

glucose

 

 

 

Glucose

 

 

 

 

Blood glucose

 

Blood

 

 

273

 

 

 

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

Cellular Transmission of Signals from Extracellular Messengers

 

Hormones,

neurotransmitters

(!p. 55 and

 

p. 82), cytokines and chemokines (!p. 94ff.)

 

act as messenger substances (first messengers)

 

that are transported to their respective target

 

cells by extracellular pathways. The target cell

 

has a high-affinity binding site (receptor) for

Reproduction

its specific messenger substance.

 

Glycoprotein and peptide messengers as

 

 

well as catecholamines bind to cell surface re-

 

ceptors on the target cell. Binding of the mes-

 

senger to its receptor usually triggers certain

 

protein-protein interactions (and sometimes

and

protein-phospholipid interactions). This leads

to the release of secondary messenger sub-

Hormones

stances (second messengers) that forward the

 

 

signal within the cell. Cyclic adenosine mono-

 

phosphate (cAMP), cyclic guanosine mono-

 

phosphate (cGMP), inositol 1,4,5-tris-

11

phosphate (IP3), 1,2-diacylglycerol (DAG) and

Ca2+ are such second messengers. Since the

 

 

molecular structure of the receptor ensures

 

that the effect of the first messenger will be

 

specific, multiple first messengers can use the

 

same second messenger. Moreover, the intra-

 

cellular concentration of the second mes-

 

senger can be raised by one messenger and

 

lowered by another. In many cases, different

 

types of receptors exist for a single first mes-

 

senger.

 

 

 

cAMP as a Second Messenger

 

 

For a cAMP-mediated response to occur, the

 

cell membrane must contain stimulatory (Gs)

 

or inhibitory (Gi) G proteins (guanyl nu-

 

cleotide-binding proteins) (!A1). These G

 

proteins consist of three subunits—alpha (αS or

 

αi), beta (") and gamma (γ)—and are therefore

 

heterotrimers. Guanosine diphosphate (GDP) is

 

bound to

the α-subunit of

an inactive

 

G protein. Once the first messenger (M) binds

 

to the receptor (Rec.), the M–Rec. complex

 

conjugates with the Gs-GDP (or Gi-GDP)

 

molecule (!A2). GDP is then replaced by cyto-

 

solic GTP, and the -subunit and the M–Rec.

 

complex dissociate from the α-subunit if Mg2+

 

is present (!A3). αs-GTP or αi-GTP remain as

274

the final products. Adenylate cyclase on the in-

side of the cell membrane is activated by αs-

 

GTP (cytosolic cAMP concentration rises) and inhibited by αi-GTP (cAMP concentration falls;

!A3).

Gs-activating messengers. ACTH, adenosine (A2A and A2B rec.), antidiuretic hormone = vasopressin (V2 rec.), epinephrine and norepinephrine ("1, "2, "3 adrenoceptors), calcitonin, CGRP, CRH, dopamine (D1 and D5 rec.), FSH, glucagon, histamine (H2 rec.), oxytocin (V2 rec., see above), many prostaglandins (DP, IP, EP2 and EP4 rec.), serotonin = 5-hydroxytrypt- amine (5-HT4 and 5-HT7 rec), secretin and VIP activate Gs proteins, thereby raising cAMP levels. TRH and TSH induce partial activation.

Gi-activating messengers. Some of the above messenger substances also activate Gi proteins (thereby lowering cAMP levels) using a different binding receptor. Acetylcholine (M2 and M4 rec.), adenosine (Al and A3 rec.), epinephrine and norepinephrine (α2 adrenoceptors), angiotensin II, chemokines, dopamine (D2, D3 and D4 rec.), GABA (GABAB rec.), glutamate (mGLU2–4 and mGLU6–8 rec.), melatonin, neuropeptide Y, opioids, serotonin = 5-hydroxytryptamine (5-HTl rec.), somatostatin and various other substances activate Gi proteins.

Effects of cAMP. cAMP activates type A protein kinases (PKA = protein kinase A) which then activate other proteins (usually enzymes and membrane proteins, but sometimes the receptor itself) by phosphorylation (!A4). The specific response of the cell depends on the type of protein phosphorylated, which is determined by the type of protein kinases present in the target cell. Phosphorylation converts the proteins from an inactive to an active form or vice versa.

Hepatic glycogenolysis, for instance, is dually increased by cAMP and PKA. Glycogen synthase catalyzing glycogen synthesis is inactivated by phosphorylation whereas glycogen phosphorylase stimulating glycogenolysis is activated by cAMP-mediated phosphorylation.

Signal transduction comprises the entire signaling pathway from the time the first messenger binds to the cell to the occurrence of cellular effect, during which time the signal can be (a) modified by other signals and

(b) amplified by many powers of ten. A single adenylate cyclase molecule can produce numerous cAMP and PKA molecules, which in turn can phosphorylate an enormous number of enzyme molecules. The interposition of more kinases can lead to the formation of long

Despopoulos, Color Atlas of Physiology © 2003 Thieme

!

All rights reserved. Usage subject to terms and conditions of license.

 

A. cAMP as second messenger

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extracellular space

 

First messenger

 

 

 

 

 

 

 

Deactivation:

 

 

 

 

 

 

 

 

 

 

Ms level

 

 

 

 

 

Stimulatory

Ms

 

 

 

 

 

Mi

Inhibitory

 

 

 

 

 

 

Messenger (M)

 

 

decreases

 

 

 

 

messenger

 

 

 

 

 

messenger

 

 

 

 

 

 

 

 

 

 

 

binds to

 

 

 

 

 

 

 

 

Bi

level

 

 

e.g., epinephrine

 

 

 

 

 

e.g., epinephrine

 

 

 

 

 

 

 

 

receptor (R)

 

 

 

 

 

 

 

 

I

(β adrenoceptors)

 

 

 

 

 

2 adrenoceptor)

 

 

 

 

decreases

Transmission

 

 

Rs

 

 

 

Ri

 

cAMP

 

 

 

 

Cell

 

 

β

 

 

 

γ

 

 

 

cAMP

 

 

γ

β

 

 

 

 

 

 

 

membrane

GDP

 

 

GDP

 

 

 

 

 

 

 

 

 

 

 

αs

 

 

 

αi

 

 

β

 

γ

β

γ

 

 

1

Gs protein

 

 

 

 

 

Gi protein

GDP

 

 

 

GDP

Signal

 

Adenylate cyclase

 

αs

 

αi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gs

Gi

 

 

 

 

 

 

 

 

 

 

 

 

Intracellular space

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cellular

 

 

Ms

 

M-R complex

 

 

 

Mi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rs

 

binds to

 

 

 

 

 

 

 

 

 

 

 

 

 

11.5

 

 

 

G protein

 

 

 

Ri

 

 

 

 

 

 

 

 

 

 

 

 

β

 

β

γ

 

 

 

β

γ

 

 

 

 

β

γ

Plate

 

 

 

γ

 

 

 

 

 

 

 

 

 

 

GDP

 

 

 

GDP

 

 

 

 

 

 

 

 

 

 

αs

 

 

 

αi

 

 

 

 

 

 

 

 

 

 

2

 

 

 

Adenylate cyclase

 

 

 

 

 

 

 

Return

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to inactive

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

state

 

 

 

 

 

 

Ms

 

α-GTP

 

 

 

Mi

 

 

 

 

 

 

 

 

 

 

 

 

 

influences

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rs

 

adenylate cyclase

 

 

Ri

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mg2+

 

 

 

 

 

 

5

 

 

Mg2+

GTP

 

 

 

 

GTP

 

 

 

 

 

GTP

 

 

 

αs

 

 

αi

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GDP

 

 

 

 

 

 

 

GDP

 

 

 

 

 

GTPase

 

3

Stimulates

 

 

Inhibits

 

 

 

 

 

splits to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

form GDP

 

 

 

 

 

Adenylate cyclase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second

 

 

 

 

Phospho-

 

 

 

 

 

 

 

 

 

 

ATP

 

 

 

 

cAMP

diesterase

 

 

 

 

 

 

 

 

 

 

 

messenger

 

 

 

 

 

 

5’-AMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protein kinase A

 

 

Activates

 

 

Degradation of

 

 

 

 

 

 

 

 

 

Phosphatases

 

cAMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proteins

 

 

PO4

Proteins

 

 

 

 

Protein

 

 

 

 

 

 

Phosphorylation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

ATP

 

ADP

 

 

Cell response

 

 

 

 

 

 

 

 

275

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

 

!

 

kinase cascades that additionally amplify the

 

original signal while receiving further regula-

 

tory signals.

 

Deactivation of the signaling cascade (!A,

 

right panel) is induced by the α-subunit in that

 

its GTP molecule splits off GDP and Pi after re-

 

acting with its GTPase (!A5), and the subunit

 

subsequently binds to a subunit to again

 

form the trimeric G protein. Phosphodiesterase

Reproduction

also converts cAMP into inactive 5!-AMP

(!A4, A6), and phosphatases dephosphorylate

 

 

the protein previously phosphorylated by pro-

 

tein kinase A (!A4). Another way to inactivate

 

a receptor in the presence of high messenger

 

concentrations is to make the receptor insensi-

and

tive by phosphorylating it (desensitization).

Cholera toxin inhibits the GTPase, thereby blocking

Hormones

its deactivating effect on adenylate cyclase (!A5).

 

 

This results in extremely high levels of intracellular

 

cAMP. When occurring in intestinal cells, this can lead

 

to severe diarrhea (!p. 262). Pertussis (whooping

11

cough) toxin and forskolin also lead to an increase in

the cytosolic cAMP concentration. Pertussis toxin

 

 

does this by inhibiting Gi protein and thereby block-

 

ing its inhibitory effect on adenylate cyclase, while

 

forskolin directly activates adenylate cyclase.

 

Theophylline and caffeine inhibit the conversion of

 

cAMP to 5!-AMP, which extends the life span of cAMP

 

and prolongs the effect of the messenger.

 

Certain ion channels are regulated by Gs, Gi and

 

other G proteins (Go) with or without the aid of

 

adenylate cyclase. Some Ca2+ channels are acti-

 

vated by Gs proteins and inactivated by Go pro-

 

teins, whereas some K+ channels are activated

 

by Go proteins and (the subunits of) Gi pro-

 

teins (!p. 83 B). Golf in olfactory receptors,

 

transducin in retinal rods (!p. 348ff.), and α-

 

gustducin in gustatory sensors are also mem-

 

bers of the G protein family (!p. 338).

 

IP3 and DAG as Second Messengers

 

As in the case of Gs proteins, once the first mes-

 

senger using this transduction pathway binds

 

to its receptor outside the cell, the αq subunit

 

dissociates from the heterotrimeric Gq protein

 

and activates phospholipase C-" (PLC-") on the

 

inside of the cell membrane (!B1). PLC-" con-

 

verts phosphatidylinositol 4,5-bisphosphate

 

(PIP2), to inositol 1,4,5-trisphosphate (IP3) and

 

diacylglycerol (DAG). IP3 and DAG function as

276

parallel second messengers with different ac-

tions that are exerted either independently or jointly (!B1).

IP3 is a hydrophilic molecule carried via the cytosol to Ca2+ stores within the cell (mainly in the endoplasmic reticulum; !p. 36). IP3 binds there to Ca2+ channels to open them (!B2), leading to an efflux of Ca2+ from the intracellular stores into the cytosol. In the cytosol, Ca2+ acts as a third messenger that regulates various cell functions, e.g., by interacting with the cAMP signaling chain. Many Ca2+-related activities are mediated by calmodulin, a calciumbinding protein (!pp. 36 and 70).

DAG is a lipophilic molecule that remains in the cell membrane and has two main functions:

DAG is broken down by phospholipase A2 (PLA-2) to yield arachidonic acid, a precursor of eicosanoids (!B3 and p. 269).

DAG activates protein kinase C (PKC). PKC is Ca2+-dependent (hence the “C”) because the Ca2+ released by IP3 (see above) is needed to transfer PKC from the cytosol to the intracellular side of the cell membrane (!B4). Thus activated PKC phosphorylates the serine or threonine residues of many proteins.

PKC triggers a series of other phosphorylation reactions (high signal amplification) that ultimately lead to the phosphorylation of MAP kinase (mitogen-ac- tivated protein kinase). It enters the cell nucleus and activates Elk-1, a gene-regulating protein. NF- B, another gene-regulating protein, is also released in response to PKC phosphorylation. In addition, PKC activates Na+/H+ antiporters, thereby raising the cellular pH—a stimulus that triggers many other cellular reactions.

IP3 and DAG activating messengers include acetylcholine (M1 and M3 cholinoceptors), antidiuretic hormone = vasopressin (V1 rec.), epinephrine and norepinephrine (α1 adrenoceptor), bradykinin, CCK, endothelin, gastrin, glutamate (mGLU1 and mGLU5 rec.), GRP, histamine (H1 rec.), leukotrienes, neurotensin, oxytocin and various prostaglandins (FP, TP, and Ep1 rec.), serotonin = 5-hydroxytryp- tamine (5-HT2 rec.), tachykinin, thromboxane A2. TRH and TSH induce partial activation.

Deactivation of the signaling cascade can also be achieved through self-inactivation of the G proteins involved (GTP cleavage) and phosphatase (see above) as well as by degradation of IP3.

!

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

B. Diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) as second messengers

e.g.,

 

 

 

 

PIP2 (phosphatidylino-

5

P

 

 

 

 

 

 

 

 

 

epinephrine (α1),

Messenger binds

 

sitol 4,5-bisphosphate)

 

P

 

 

histamine (H1),

to specific receptors

 

P 1

 

4

 

 

CCK, etc.

 

 

 

Second

 

 

 

 

 

 

ECF

 

 

 

 

 

 

 

 

 

 

 

 

messengers

 

IP3

P

1

5 P

 

 

 

 

 

 

Cell

 

 

Gq

 

 

(inositol 1,4,5-

4

P

 

 

 

 

trisphosphate)

membrane

 

 

DAG

 

 

 

PIP2

Phospho-

 

DAG

 

 

 

 

 

 

 

 

(diacyl-

 

 

 

 

 

 

lipase C-β

 

Phospho-

 

 

 

 

Cytosol

1

 

glycerol)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lipase A2

 

 

 

 

 

 

 

 

IP3

Arachidonic acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ca2+ stores

2

3

 

4

 

 

 

 

 

 

 

Protein

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eicosanoids

Protein

 

 

 

 

 

 

 

 

 

 

Calmodulin

 

 

 

 

kinase C

 

 

 

 

 

 

 

 

 

 

 

 

Ca2+

 

Ca2+

 

 

 

 

 

 

 

 

 

 

 

 

Protein-

P

 

 

 

H+

 

 

 

 

 

 

 

 

 

 

 

 

 

cGMP

 

 

 

 

Na+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pH

 

 

 

 

 

 

 

Cell response

 

 

 

 

 

 

 

Neurons, exocrine and endocrine pancreas,

 

 

 

 

 

 

platelets, liver, adrenal cortex, leukocytes, oocytes, etc.

 

 

 

 

 

Plate 11.6 Cellular Signal Transmission II

C. Tyrosine kinase receptors

 

 

 

 

 

 

 

 

 

Messenger

 

 

Messenger-

 

 

 

 

 

 

Receptors

 

 

 

 

 

 

 

 

 

 

receptor

 

e.g.,

 

 

ECF

 

for messenger

EGF, etc.

 

 

 

 

binding

 

 

 

Extracellular

 

 

 

Insulin

 

 

 

 

 

 

 

 

 

 

Cell membrane

domains

 

 

 

 

 

α

α

 

 

Trans-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

membrane

 

 

 

 

 

β

β

 

 

alpha helix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cytosol

Cytosolic

 

 

 

 

 

 

 

residues

 

domains

 

 

 

 

 

P

P

 

 

 

 

 

 

 

 

 

 

 

Tyrosine

 

 

 

 

 

P

P

Phosphotyrosinyl

 

 

kinase

 

 

 

P

P

 

 

 

 

 

 

 

 

P

P

 

 

1a Inactive monomers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tyr

 

 

 

 

Autophospho-

P

IRS-1

 

 

 

 

 

 

rylation

 

 

 

 

 

 

 

 

O

1b Active dimer

 

SH2 domain

 

 

 

OH

ATP

ADP

 

 

2 Target proteins bind to

277

 

 

 

PO32–

 

 

 

 

 

 

 

 

 

 

SH2 domains

 

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

!

Enzyme-Linked Cell Surface Receptors For Messenger Substances

 

These (G protein-independent) receptors, to-

 

gether with their cytosolic domains, act as

 

enzymes that are activated when a messenger

 

binds to the receptor’s extracellular domain.

 

There are five classes of these receptors:

 

1. Receptor guanylyl cyclases convert GTP

 

into the second messenger cGMP, which acti-

Reproduction

vates protein kinase G (PKG; see below). The

atriopeptin receptor belongs to this class.

 

 

2. Receptor tyrosine kinases (!C),

 

phosphorylate proteins (of same or different

 

type) at the OH group of their tyrosyl residues.

 

The receptors for insulin and various growth

and

factors (GF) such as e.g., E[epidermal]GF, PDGF,

N[nerve]GF, F[fibroblast]GF, H[hepatocyte]GF,

Hormones

and I[insulin-like]GF-1 belong to this class of

and PDGF) are often transferred inside the cell via

 

receptors.

 

Signals regarding first messenger binding (e.g., EGF

11

binding of two receptors (dimerization; C1a ! C1b)

and subsequent mutual phosphorylation of their cy-

 

 

tosolic domain (autophosphorylation, !C1b). The

 

receptor for certain hormones, like insulin and IGF-1,

 

is from the beginning a heterotetramer (α2"2) that

 

undergoes autophosphorylation before phosphory-

 

lating another protein (insulin receptor substrate-1,

 

IRS-1) that in turn activates intracellular target pro-

 

teins containing SH2 domains (!C2).

3. Receptor serine/threonine kinases, which like the TGF-! receptor, function similar to kinases in Group 2, the only difference being that they phosphorylate serine or threonine residues of the target protein instead of tyrosine residues (as with PKC; see above).

4.Tyrosine kinase-associated receptors are those where the receptor works in combination with non-receptor tyrosine kinases (chiefly proteins of the Src family) that phosphorylate the target protein. The receptors for STH, prolactin, erythropoietin and numerous cytokines belong to this group.

5.Receptor tyrosine phosphatases remove phosphate groups from tyrosine residues. The CD45 receptor involved in T cell activation belongs to this group.

Hormones with Intracellular Receptors

Steroid hormones (!p. 270ff., yellow areas), 278 calcitriol and thyroid hormones are like other

hormones in that they induce a specific cell response with the difference being that they activate a different type of signaling cascade in the cell. They are lipid-soluble substances that freely penetrate the cell membrane.

Steroid hormones bind to their respective cytoplasmic receptor protein in the target cell (!D). This binding leads to the dissociation of inhibitory proteins (e.g., heat shock protein, HSP) from the receptors. The hormone–recep- tor protein complex (H–R complex) then migrates to the cell nucleus (translocation), where it activates (induces) or inhibits the transcription of certain genes. The resulting increase or decrease in synthesis of the respective protein (e.g., AIPs; !p. 182) is responsible for the actual cell response (!D).

Triiodothyronine (T3; !p. 286ff.) and calcitriol (!p. 292) bind to their respective receptor proteins in the cell nucleus (nuclear receptors). These receptors are hormone-acti- vated transcription factors. Those of calcitriol can induce the transcription of calcium-bind- ing protein, which plays an important role in interstitial Ca2+ absorption (!p. 262).

Recent research indicates that steroid hormones and calcitriol also regulate cell function by non-genomic control mechanisms.

Nitric Oxide as a Transmitter Substance

In nitrogenergic neurons and endothelial tissues, nitric (mon)oxide (NO) is released by Ca2+/calmodulin-mediated activation of neuronal or endothelial nitric oxide synthase (NOS) (!E). Although NO has a half-life of only a few seconds, it diffuses into neighboring cells (e.g., from endothelium to vascular myocytes) so quickly that it activates cytoplasmic guanylyl cyclase, which converts GTP into cGMP (!E). Acting as a second messenger, cGMP activates protein kinase G (PKG), which in turn decreases the cytosolic Ca2+ concentration [Ca2+]i by still unexplained mechanisms. This ultimately leads to vasodilatation (e.g., in coronary arteries).

Penile erections are produced by cGMP-mediated vasodilatation of the deep arteries of the penis (!p. 308). The erection can be prolonged by drugs that inhibit cGMP-specific phosphodiesterase type 5, thereby delaying the degradation of cGMP (e.g., sildenafil citrate = Viagra!).

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]