
- •Определить соответствие вариационного распределения измеренной величины нормальному закону распределения
- •Практическая часть
- •Ход работы
- •(Ординаты нормальной кривой)
- •Применение математической статистики при обработке результатов анализа
- •Значения для различныха
- •Потом, пользуясь формулой
- •Лабораторная работа№ 2
- •Порядок работы
- •Механические свойства твердых тел
- •§ 8.4. Механические свойства биологических тканей
- •Дополнительный материал
- •Механические свойства биологических тканей.
- •Вязкоупругие, упруговязкие и вязкопластичные
- •Системы. Механические свойства мышц, костей,
- •Кровеносных сосудов, лёгких
- •Задачи, объекты и методы биомеханики.
- •Биомеханика опорно-двигательной системы человека. Биомеханические аспекты остеогенеза.
- •Сочленения и рычаги в опорно-двигательном аппарате человека.
- •Эргометрия. Механические свойства тканей организма.
- •Заключение
- •Лабораторная работа № 3 «Определение скорости звука в воздухе и собственных частот воздушного столба»
- •Механические колебания и волны.
- •5.1. Свободные механические колебания (незатухающие и затухающие)
- •5.2. Кинетическая и потенциальная энергии колебательного движения
- •5.3. Сложение гармонических колебаний
- •5.4. Сложное колебание и его гармонический спектр
- •5.5. Вынужденные колебания. Резонанс
- •5.6. Автоколебания
- •5.7. Уравнение механической волны
- •5.8. Поток энергии и интенсивность волны
- •5.9. Ударные волны
- •5.10. Эффект Доплера
- •Лабораторная работа №4 Снятие спектральной характеристики уха на пороге слышимости
- •Ход работы:
- •Акустика. Природа звука. Физические характеристики звука. Тоны и шумы.
- •Физические характеристики звука. Тоны и шумы.
- •Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- •Понятие о звукопроводящей и звуковоспринимающей системах уха человека. Физика слуха.
- •Поглощение и отражение звуковых волн. Реверберация.
- •Физические основы звуковых методов исследования в клинике.
- •Лабораторная работа №5 Исследование действия ультразвука на вещество
- •Ход работы:
- •2. Установить ручкой 2 длину волны, на которой производится измерение. Длина волны высветится на верхнем световом табло.
- •Ультразвук. Методы получения и регистрации.
- •Источники и приемники акустических колебаний и ультразвука.
- •Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук.
- •Физические основы применения ультразвуковых волн в медицине Ультразвуковая диагностика. Хирургическое и терапевтическое применение ультразвука.
- •Инфразвук, особенности его распространения. Физические основы действия инфразвука на биологические системы.
- •Вибрации, их физические характеристики
- •Ударные волны.
- •( Самостоятельная подготовка)
- •Задачи.
- •Лабораторная работа №6. « Определение поверхностного натяжения жидкостей методом измерения максимального давления в пузырке воздуха»
- •Порядок работы
- •Задачи.
- •«Определение по ударному объёму крови сердца энергозатрат, кпд , расхода кислорода, при совершении механической работы.»
- •1.1. Основные понятия гидродинамики. Условие неразрывности струи.
- •1.2. Уравнение Бернулли.
- •1)Наклонная трубка тока постоянного сечения.
- •2)Горизонтальная трубка тока жидкости переменного сечения.
- •3) Измерение скорости потока жидкости. Трубка Пито.
- •4) Закупорка артерии.
- •Запишем уравнение Бернулли и условие неразрывности струи для нашего случая:
- •5) Разрыв аневризмы.
- •1.7 Ламинарное и турбулентное течения. Число Рейнольдса. Условия проявления турбулентности в системе кровообращения.
- •1.8. Роль эластичности кровеносных сосудов в системе кровообращения. Пульсовая волна.
- •1.9 Методы измерения давления крови.
- •Физические вопросы гемодинамики
- •9.1. Модели кровообращения
- •9.3. Работа и мощность сердца. Аппарат искусственного кровообращения
- •Определения основных термодинамических величин
- •Первое начало термодинамики
- •Свободная и связанная энергия
- •Обратимые и необратимые процессы
- •Источники свободной энергии живого организма и виды совершаемых им работ
- •Тепловой баланс организма, способы теплообмена
- •Температурный гомеостазис, химическая и физическая терморегуляция
- •Энерготраты организма, основной обмен
- •Понятие о физиологической калориметрии
- •Второе начало термодинамики понятие энтропии
- •Статистический смысл энтропии
- •Формулировка второго начала термодинамики
- •Диссипативная функция
- •Научное и практическое значение второго начала термодинамики
- •Второе начало термодинамики и живой организм
- •Стационарное состояние
- •Лабораторная работа №8 Определение вязкости жидкости Исследование зависимости вязкости жидкости от концентрации
- •Ход работы:
- •«Определение вязкости жидкости. Исследование зависимости вязкости жидкости от концентрации». Вопросы теории.
- •1.3. Внутреннее трение (вязкость) жидкости. Формула Ньютона.
- •Единицей измерения в “си” является н сек / м2 ,
- •Ньютоновские и неньютоновские жидкости.
- •1.4. Течение вязкой жидкости. Формула Пуазейля.
- •1.5. Методы определения вязкости жидкости.
- •Вискозиметр Оствальда представлен на рисунке 7.
- •Путь, пройденный жидкостью в капиллярах одинакового сечения при одинаковых давлениях и температурах, обратно пропорционален внутреннему трению или вязкости:
- •1.6 Реологические свойства крови, плазмы и сыворотки. Факторы, влияющие на вязкость крови в организме. Особенности течения крови в крупных и мелких сосудах
- •Относительные вязкости крови, плазмы и сыворотки крови. (Относительной вязкостью биологической жидкости называют отношение ее вязкости к вязкости воды.)
- •Лабораторная работа №9
- •11.8. Потенциал действия и его распространение
- •11.9. Активно-возбудимые среды. Автоволновые процессы в сердечной мышце
- •1. Вопросы теории.
- •1.1. Мембранные потенциалы и их ионная природа.
- •Где dE/dx – производная от напряженности электрического поля по направлению оси ох, являющаяся мерой неоднородности электрического поля вдоль соответствующего направления. Из (12) следует
- •1.5. Электрокардиография. Теория отведений Эйнтховена.
- •1.6. Понятие о мультипольном эквивалентном электрическом генераторе сердца.
- •1.7. Электрокардиограф.
- •1.8. Векторная электрокардиография.
- •Вопросы теории
- •Лабораторная работа 10 градуировка термоэлемента в качестве термометра и определение его термо-эдс
- •Порядок работы
- •Устройства для съема, передачи и регистрации медико-биологической информации
- •Электроды для съема биоэлектрического сигнала
- •Датчики медико-биологической информации.
- •Назначение и классификация датчиков.
- •Характеристики датчиков. Погрешность датчиков.
- •Примеры устройства датчиков, используемых в медицине.
- •Внутренняя контактная разность потенциалов. Термоэлектродвижущая сила
- •Аналоговые регистрирующие устройства. Различные системы регистрации непрерывной информации
- •Лабораторная работа №11
- •Расчетные формулы:
- •Определение сопротивление живых тканей человека переменному току.
- •12.2. Электрический диполь
- •. Электропроводимость электролитов
- •12.10. Электропроводимость биологических тканей и жидкостей при постоянном токе
- •15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
- •14.2. Переменный ток
- •14.3. Полное сопротивление в цепи переменного тока. Резонанс напряжений
- •14.4. Импеданс тканей организма. Дисперсия импеданса. Физические основы реографии
- •Генераторы импульсных (релаксационных) электрических колебаний, мультивибратор, блокинг-генератор. (Лекция №11)
- •Ход работы:
- •Электростимуляция тканей и органов
- •3) Минимальное количество противопоказаний (поздние сроки беременности, онкологические больные),
- •Связь амплитуды, формы импульса, частоты следования импульсов, длительности импульсного сигнала с раздражающим действием импульсного тока. Закон Дюбуа-Реймона, уравнение Вейса-Лапика.
- •Генераторы импульсных (релаксационных) электрических колебаний. Мультивибратор. Блокинг-генератор.
- •Дифференцирующая и интегрирующая цепи: принципиальная схема, зависимость формы выходного импульса от длительности входного и постоянной времени цепи.
- •Электростимуляция сердца и ее виды
- •Дефибрилляторы.
- •Вопросы теории (исходный уровень):
- •Воздействие переменными токами
- •Аппаратура электрохирургии
- •Аппарат электрохирургии высокочастотный
- •Терапевтический контур
- •15.3. Воздействие переменным магнитным полем
- •15.4. Воздействие переменным электрическим полем
- •15.5. Воздействие электромагнитными волнами
- •Физиотерапевтические аппараты высокочастотнойтерапии. Аппараты индуктотермии и увч-терапии. Терапевтический контур.
- •Вопрос 3. 15 минут. Генераторы синусоидальных колебаний с самовозбуждением
- •В подобном генераторе в колеба-тельном контуре почти не происходит потерь энергиии и ток Jк в нем является только возбудителем переменного потенциала на сетке лампы, к которой он подключен.
- •Двухтактный генератор
- •. Магнитные свойства тканей организма. Понятие о биомагнетизме и магнитобиологии
- •Расчетная формула для определения коэффициента усиления усилителя по напряжению:
- •Ход работы:
- •Регулятором осциллографа можно смещать изображение вверх или вниз. Все кнопки осциллографа должны быть отжаты.
- •2. Снятие амплитудной характеристики усилителя электрокардиографа.
- •3. Снятие частотной характеристики усилителя электрокардиографа.
- •Определите выходное напряжение и коэффициент усиления усилителя электрокардиографа для частот 3-600Гц и занесите данные в таблицу №4.
- •1. Вопросы теории.
- •1.1. Усилители. Коэффициент усиления усилителя. Требования к усилителям. Классификация усилителей.
- •Усилителями электрических сигналов или электронными усилителями называют устройства, увеличивающие эти сигналы за счет энергии внешнего источника.
- •1.2. Амплитудная характеристика усилителя. Амплитудные искажения. Предупреждение амплитудных искажений.
- •Где Umax1– амплитуда напряжения основной гармоники; Umax2, Umax3, … - амплитуды новых гармоник. Для точного воспроизведения сигнала коэффициент, очевидно, должен быть минимален.
- •Для выбора рабочей точки в усилителе используют резистор rк(рис.5).
- •1.8. Дифференциальный усилитель.
- •Вопросы теории (исходный уровень):
- •Лабораторная работа №15 определение концентрации оптически активных веществ с помощью поляриметра
- •Ход работы:
- •1. Поляризация света, свет естественный и поляризованный
- •2. Закон Малюса
- •3.Поляризация света при отражении и преломлении на границе двух диэлектриков.
- •4. Поляризация света при двойном лучепреломлении (обыкновенный и необыкновенный лучи, оптическая анизотропия, ход обыкновеных и необыковенных лучей через анизотропный кристалл, призма Николя)
- •5.Явление дихроизма.
- •6.Вращение плоскости поляризации оптически активными веществами. Поляриметрия (оптическая активность, постоянная вращения, правовращающие и левовращающие вещества, вращательная дисперсия).
- •7.Исследование биологических тканей в поляризованном свете. Спектрополяриметрия. Поляризационный микроскоп.
- •Вопросы теории (исходный уровень):
- •Исследование зависимости показателя преломления раствора от его концентрации. Определение концентрации раствора с помощью рефрактометра.
- •Ход работы:
- •4. Оформить отчет.
- •1. Явление рефракции
- •2. Отражение и преломление света.
- •3.Понятие о предельном угле падения и предельном угле преломления
- •4.Удельная рефракция вещества
- •5.Молекулярная рефракция вещества
- •Устройство и принцип действия рефрактометра
- •Вопросы теории (исходный уровень):
- •Определение цены деления окулярной шкалы и линейных размеров микрообъёктов оптическим микроскопом. (Самостоятельная подготовка)
- •Ход работы:
- •Для нахождения предела разрешения объектива микроскопа.
- •1. Микроскоп. Формула для увеличения
- •2. Разрешающая способность. Значение апертурного угла. Формула для предела разрешения.
- •3. Ультрафиолетовый микроскоп
- •4. Иммерсионные системы
- •5. Полезное увеличение
- •6. Специальные приемы микроскопии:
- •Вопросы теории (исходный уровень):
- •3.Показать на рисунке, что точечный источник, помещенный в фокусе собирающей линзы, дает плоский волновой фронт.
- •Определение длины волны излучения гелий-неонового лазера с помощью дифракционной решетки.
- •Дифракция на эритроците, наблюдаемая с помощью гелий-неонового лазера. Определение размера эритроцита.
- •14.7. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
- •Интерференция и дифракция света. Голография
- •§ 19.1. Когерентные источники света. Условия для наибольшего усиления и ослабления волн
- •§ 19.2. Интерференция света в тонких пластинках (пленках). Просветление оптики
- •19.3. Интерферометры и их применение. Понятие об интерференционном микроскопе
- •19.4. Принцип Гюйгенса—Френеля
- •19.5. Дифракция на щели в параллельных лучах
- •19.6. Дифракционная решетка. Дифракционный спектр
- •19.7. Основы рентгеноструктурного анализа
- •19.8. Понятие о голографии и ее возможном применении в медицине
- •Основы устройства и работы лазеров
- •Классификация лазеров.
- •Гелий-неоновый лазер.
- •Рубиновый лазер.
- •Молекулярный лазер на двуокиси углерода (co2-лазер).
- •Биофизические основы действия лазерного излучения на организм. Использование низкоинтенсивных лазеров в медицине.
- •Использование высокоинтенсивного лазерного излучения в медицине. Лазерная хирургическая установка "ромашка -1".
- •Безопасность при эксплуатации лазерных установок.
- •Вопросы теории (исходный уровень):
- •3.Показать на рисунке, что точечный источник, помещенный в фокусе собирающей линзы, дает плоский волновой фронт.
- •Определение длины волны излучения гелий-неонового лазера с помощью дифракционной решетки.
- •Дифракция на эритроците, наблюдаемая с помощью гелий-неонового лазера. Определение размера эритроцита.
- •14.7. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
- •Интерференция и дифракция света. Голография
- •§ 19.1. Когерентные источники света. Условия для наибольшего усиления и ослабления волн
- •§ 19.2. Интерференция света в тонких пластинках (пленках). Просветление оптики
- •19.3. Интерферометры и их применение. Понятие об интерференционном микроскопе
- •19.4. Принцип Гюйгенса—Френеля
- •19.5. Дифракция на щели в параллельных лучах
- •19.6. Дифракционная решетка. Дифракционный спектр
- •19.7. Основы рентгеноструктурного анализа
- •19.8. Понятие о голографии и ее возможном применении в медицине
- •Основы устройства и работы лазеров
- •Классификация лазеров.
- •Гелий-неоновый лазер.
- •Рубиновый лазер.
- •Молекулярный лазер на двуокиси углерода (co2-лазер).
- •Биофизические основы действия лазерного излучения на организм. Использование низкоинтенсивных лазеров в медицине.
- •Использование высокоинтенсивного лазерного излучения в медицине. Лазерная хирургическая установка "ромашка -1".
- •Безопасность при эксплуатации лазерных установок.
- •Вопросы теории (исходный уровень):
- •3.Показать на рисунке, что точечный источник, помещенный в фокусе собирающей линзы, дает плоский волновой фронт.
- •Определение длины волны излучения гелий-неонового лазера с помощью дифракционной решетки.
- •Дифракция на эритроците, наблюдаемая с помощью гелий-неонового лазера. Определение размера эритроцита.
- •14.7. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
- •Интерференция и дифракция света. Голография
- •§ 19.1. Когерентные источники света. Условия для наибольшего усиления и ослабления волн
- •§ 19.2. Интерференция света в тонких пластинках (пленках). Просветление оптики
- •19.3. Интерферометры и их применение. Понятие об интерференционном микроскопе
- •19.4. Принцип Гюйгенса—Френеля
- •19.5. Дифракция на щели в параллельных лучах
- •19.6. Дифракционная решетка. Дифракционный спектр
- •19.7. Основы рентгеноструктурного анализа
- •19.8. Понятие о голографии и ее возможном применении в медицине
- •Основы устройства и работы лазеров
- •Классификация лазеров.
- •Гелий-неоновый лазер.
- •Рубиновый лазер.
- •Молекулярный лазер на двуокиси углерода (co2-лазер).
- •Биофизические основы действия лазерного излучения на организм. Использование низкоинтенсивных лазеров в медицине.
- •Использование высокоинтенсивного лазерного излучения в медицине. Лазерная хирургическая установка "ромашка -1".
- •Безопасность при эксплуатации лазерных установок.
- •Лабораторная работа № 20 анализ спектров испускания веществ с помощью монохроматора
- •Ход работы:
- •Порядок работы на монохроматоре специальном дифракционном мсд-2
- •Вопросы теории.
- •Структура энергетических уровней сложных молекул. Молекулярные спектры.
- •Излучение и поглощение энергии атомами и молекулами.
- •Таким образом, энергия электрона, связанного в атоме с ядром, отрицательна. Энергия свободного электрона равна нулю.
- •Структура энергетических уровней сложных молекул. Молекулярные спектры.
- •Эмиссионный и абсорбционный спектральный анализ, его медицинское применение.
- •Спектроскопы, спектрографы, монохроматоры, спектрофотометры и их применение в медицине.
- •Лабораторная работа № 20 анализ спектров испускания веществ с помощью монохроматора
- •Ход работы:
- •Порядок работы на монохроматоре специальном дифракционном мсд-2
- •Вопросы теории.
- •Структура энергетических уровней сложных молекул. Молекулярные спектры.
- •Излучение и поглощение энергии атомами и молекулами.
- •Таким образом, энергия электрона, связанного в атоме с ядром, отрицательна. Энергия свободного электрона равна нулю.
- •Структура энергетических уровней сложных молекул. Молекулярные спектры.
- •Эмиссионный и абсорбционный спектральный анализ, его медицинское применение.
- •Спектроскопы, спектрографы, монохроматоры, спектрофотометры и их применение в медицине.
- •Исследование спектров люминесценции
- •Ультрафиолетовое излучение. Первичные механизмы действия ультрафиолетового излучения на биологические объекты.
- •Уф условно делится на три области
- •Спектры поглощения и флюоресценции некоторых биологически важных соединений. Сплошные кривые – оптическая плотность, кривые пунктиром – интенсивность флюоресценции.
- •2. Устройство и принцип работы ртутных ламп
- •Вопрос 3. 10 минут
- •3. Инфракрасное излучение. Первичные механизмы действия инфракрасного излучения на биологические объекты. Аппараты светолечения.
- •4. Люминесценция, ее виды. Характеристики люминесценции (спектр, длительность, квантовый выход). Законы Вавилова и Стокса.
- •Фотолюминесценция. Правило Стокса.
- •Флуоресценция и фосфоресценция.
- •Синглетная
- •Хемилюминесценция. Собственная, активированная и биолюминесценция Классификация хемилюминесценции.
- •Молекулярный механизм хемилюминесценции.
- •Собственное свечение клеток и тканей животных
- •Активированная хемилюминесценция
- •Задание для студентов по лабораторной работе № 23
- •Лабораторная работа № 23 Определение толщины слоя половинного ослабления ионизирующего излучения для различных материалов
- •2. Порядок работы
- •4. Выполнение работы
- •Рентгеновское излучение
- •26.1. Устройство рентгеновской трубки. Тормозное рентгеновское излучение
- •26.2. Характеристическое рентгеновское излучение. Атомные рентгеновские спектры
- •26.3. Взаимодействие рентгеновского излучения с веществом
- •26.4. Физические основы применения рентгеновского излучения в медицине
- •Задание для студентов по лабораторной работе № 24 «Определение удельной массовой или объемной активности пищевых продуктов радиометром»
- •Задачи.
- •Определить период полураспада u234, если его содержание в естественном уране составляет 0,006%. Лабораторная работа № 24 Определение объемной и удельной активности проб радиометром
- •Порядок работы.
- •Где Аист- паспортное значение активности источника цезий-137 осги, Бк. Вместо Nфонберем Ошибка и доверительный интервал чувствительности радиометра равна
- •Чувствительность радиометра с ошибкой равна σ±Δσ
- •Основные характеристики ядер атомов.
- •27.1. Радиоактивность
- •27.2. Основной закон радиоактивного распада. Активность
- •27.3. Взаимодействие ионизирующего излучения с веществом
- •Величина лпэ в кэВ/мкм зависит от плотности вещества.
- •Методы получения радионуклидов.
- •27.4. Физические основы действия ионизирующих излучений на организм
- •27.6. Использование радионуклидов и нейтронов в медицине
- •27.7. Ускорители заряженных частиц и их использование в медицине
- •Республиканские допустимые уровни содержания радионуклидов цезия-137 и стронция-90 в пищевых продуктах и питьевой воде (рду-99)
- •Задание для студентов по лабораторной работе № 25 «Дозиметрия ионизирующего излучения. Определить интегральную дозу накопления радионуклидов для каждого студента»
- •Задачи.
- •Дозиметрия ионизирующего излучения. Определить интегральную дозу накопления радионуклидов для каждого студента.
- •Подготовка к работе
- •Контроль точности
- •Где Аист- паспортное значение активности источника цезий-137 осги, Бк. Вместо Nфонберем Ошибка и доверительный интервал чувствительности радиометра равна
- •Регистрация результатов измерений
- •Элементы дозиметрии ионизирующих излучений
- •28.1. Доза излучения и экспозиционная доза. Мощность дозы
- •28.2. Количественная оценка биологического действия ионизирующего излучения. Эквивалентная доза
- •28.3. Дозиметрические приборы
- •28.4. Защита от ионизирующего излучения
- •Дозиметрия ионизирующего излучения Введение
- •Дозиметрия ионизирующего излучения. Поглощенная доза.
- •Мощность дозы.
- •Внесистемная – рад
- •Экспозиционная и эквивалентная дозы.
- •Связь мощности дозы и активности.
- •Естественный радиационный фон.
- •Детекторы ионизирующего излучения.
- •Дозиметрическими приборами. Авторадиография.
19.6. Дифракционная решетка. Дифракционный спектр
Д
Рис. 19.12
Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места — щели — будут пропускать свет; штрихи, соответствующие промежутку между щелями, рассеивают и не пропускают света. Сечение такой дифракционной решетки (а) и ее условное обозначение (б) показаны на рис. 19.12. Суммарную ширину щели а и промежутка б между щелями называют постоянной или периодом дифракционной решетки:
с = а + б. (19.28)
Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всевозможным направлениям, будут интерферировать, формируя дифракционную картину.
П
Рис.
19.13
с sin = ± k, (19.29)
где k = 0,1,2,... — порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, = 0). Равенство (19.29) является основной формулой дифракционной решетки.
Между главными максимумами образуются минимумы (добавочные), число которых зависит от числа всех щелей решетки. Выведем условие для добавочных минимумов. Пусть разность хода вторичных волн, идущих под угломот соответственных тoчек соседних щелей, равна /N, т. е.
= с sin = /N, (19.30)
где N — число щелей дифракционной решетки. Этой разности хода 5 [см. (19.9)] отвечает разность фаз = 2/N.
Если считать, что вторичная волна от первой щели имеет в момент сложения с другими волнами нулевую фазу, то фаза волны от второй щели равна 2/N, от третьей — 4/N, от четвертой — 6/N и т. д. Результат сложения этих волн с учетом фазового различия удобно получить с помощью векторной диаграммы: суммаN одинаковых векторов напряженности электрического поля, угол (разность фаз) между любыми соседними из которых есть 2/N, равна нулю. Это означает, что условие (19.30) соответствует •минимуму. При разности хода вторичных волн от соседних щелей = 2(/N) или разности фаз = 2(2/N) будет также получен минимум интерференции вторичных волн, идущих от всех щелей, и т. д.
В качестве иллюстрации
на рис. 19.14 изображена векторная диаграмма,
соответствующая дифракционной решетке,
состоящей из
шести щелей:
и
т. д. — векторы напряженности электрической
составляющей электромагнитных волн от
первой, второй и т. д. щелей. Возникающие
при интерференции пять добавочных
минимумов (сумма векторов равна нулю)
наблюдаются при разности фаз волн,
приходящих от соседних щелей, в 60° (а),
120°(б), 180° (в), 240° (г) и 300°(д).
Рис. 19.14
Так, можно убедиться, что между центральным и каждым первым главным максимумами имеется N 1 добавочных минимумов, удовлетворяющих условию
с sin = ± /N; 2/N, ..., ±(N 1)/N. (19.31)
Между первым и вторым главными максимумами также расположены N 1 добавочных минимумов, удовлетворяющих условию
с sin = ± (N + 1)/N, ±(N + 2)/N, ..., (2N 1)/N, (19.32)
и т. д. Итак, между любыми двумя соседними главными максимумами наблюдается N 1 добавочных минимумов.
При
большом количестве щелей отдельные
добавочные минимумы практически не
различаются, а все пространство
между главными максимумами выглядит
темным. Чем большечисло
щелей дифракционной решетки, тем
более резки главные максимумы. На рис.
19.15 представлены фотографии
дифракционной картины, полученной от
решеток с разным
числом N щелей
(постоянная дифракционной решетки
одинакова), а на рис. 19.16 — график
распределения интенсивности.
Особо отметим роль минимумов от одной щели. В направлении, отвечающем условию (19.27), каждая щель дает минимум, поэтому минимум от одной щели сохранится и для всей решетки. Если для некоторого направления одновременно выполняются условия минимума для щели (19.27) и главного максимума решетки (19.29), то соответствующий главный максимум не возникнет.Обычно стараются использовать главные максимумы, которые размещаются между первыми минимумами от одной щели, т. е. в интервале
arcsin (/a) > > - arcsin (/a) (19.33)
При падении на дифракционную решетку белого или иного немонохроматического света каждый главный максимум, кроме центрального, окажется разложенным в спектр [см. (19.29)]. В этом случае k указывает порядок спектра.
Таким образом, решетка является спектральным прибором, поэтому для нее существенны характеристики, которые позволяют оценивать возможность различения (разрешения) спектральных линий.
Одна из таких характеристик — угловая дисперсия — определяет угловую ширину спектра. Она численно равна угловому расстоянию d между двумя линиями спектра, длины волн которых различаются на единицу (d. = 1):
D = d/ d.
Дифференцируя (19.29) и используя только положительные значения величин, получаем
с cos d = ..k d.
Из последних двух равенств имеем
D = ..k /(c cos ). (19.34)
Так как обычно используют небольшие углы дифракции, то cos 1. Угловая дисперсия D тем выше, чем больше порядок k спектра и чем меньше постоянная с дифракционной решетки.
Возможность различать близкие спектральные линии зависит не только от ширины спектра, или угловой дисперсии, но и от ширины спектральных линий, которые могут накладываться друг на друга.
Принято
считать, что если между двумя дифракционными
максимумами одинаковой интенсивности
находится область, где суммарная
интенсивность составляет 80% от
максимальной, то спектральные
линии, которым соответствуют эти
максимумы, уже разрешаются.
При этом, согласно Дж. У. Рэлею, максимум
одной линии совпадает с ближайшим
минимумом другой, что и считается
критерием разрешения. На рис. 19.17
изображены
зависимости интенсивности I
отдельных линий
от длины волны (сплошная кривая) и
их суммарная интенсивность (штриховая
кривая). Из рисунков легко увидеть
неразрешенность
двух линий (а)
и предельную разрешенность
(б),
когда максимум
одной линии совпадает с ближайшим
минимумом другой.
Разрешение спектральных линий количественно оценивается разрешающей способностью, равной отношению длины волны к наименьшему интервалу длин волн, которые еще могут быть разрешены:
R = ./ .. (19.35)
Так, если имеются две близкие линии с длинами волн 1 2 , = 1 2, то(19.35) можно приближенно записать в виде
R = 1/(1 2), или R = 2(1 2) (19.36)
Условие главного максимума для первой волны
с sin = k 1.
С ним совпадает ближайший минимум для второй волны, условие которого
с sin = k2+ 2/N.
Приравнивая правые части последних двух равенств, имеем
k1 = k2+ 2/N, k(1 2) = 2/N,
откуда [с учетом (19.36)]
R = k N .
Итак, разрешающая способность дифракционной решетки тем больше, чем больше порядок k спектра и число N штрихов.
Рассмотрим пример. В спектре, полученном от дифракционной решетки с числом щелей N = 10 000, имеются две линии вблизи длины волны = 600 нм. При какой наименьшей разности длин волн эти линии различаются в спектре третьего порядка (k = 3)?
Для ответа на этот вопрос приравняем (19.35) и (19.37), / = kN, откуда = /(kN). Подставляя числовые значения в эту формулу, находим = 600 нм/(3 • 10 000) = 0,02 нм.
Так, например, различимы в спектре линии с длинами волн 600,00 и 600,02 нм и не различимы линии с длинами волн 600,00 и 600,01 нм
Выведем формулу дифракционной решетки для наклонного падения когерентных лучей (рис. 19.18, — угол падения). Условия формирования дифракционной картины (линза, экран в фокальной плоскости) те же, что и при нормальном падении.
Проведем
перпендикулярыА'В
к
падающим
лучам и АВ'
ко вторичным
волнам, идущим
под углом
к перпендикуляру,
восставленному к плоскости решетки. Из
рис.
19.18 видно, что к положению АВ
лучи
имеют одинаковую фазу, от АВ'
и далее разность фаз лучей сохраняется.
Следовательно, разность хода
есть
= ВВ'-АА'. (19.38)
Из АА'В имеем АА = АВ sin = с sin . Из ВВ'А находим ВВ' = АВ sin = с sin . Подставляя выражения для АА и ВВ' в (19.38) и учитывая условие для главных максимумов, имеем
с (sin - sin ) = k. (19.39)
Центральный главный максимум соответствует направлению падающих лучей (= ).
Наряду с прозрачными дифракционными решетками используют отражательные, у которых штрихи нанесены на металлическую поверхность. Наблюдение при этом ведется в отраженном свете. Отражательные дифракционные решетки, изготовленные на вогнутой поверхности, способны образовывать дифракционную картину без линзы.
В современных дифракционных решетках максимальное число штрихов составляет более 2000 на 1 мм, а длина решетки более 300 мм, что дает значениеN около миллиона.