Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Зачет по КСЕ.doc
Скачиваний:
8
Добавлен:
11.02.2016
Размер:
154.62 Кб
Скачать

6. Теория биохимической эволюции

Основоположником теории биохимической эволюции является русский академик А. И. Опарин (1894 – 1980). В основу данной теории положено существенное различие между современными природными условиями Земли и условиями нашей планеты в древние времена.

Согласно теории биохимической эволюции, в далеком прошлом нашей планеты происходили абиогенный синтез органических соединений и их дальнейшая эволюция.

Современные методы оценки возраста Земли позволяют считать, что она возникла около 4,5 – 5 млрд. лет назад. В 1923 г. А. И. Опарин выдвинул предположение, что первичная атмосфера Земли не содержала свободного кислорода (для сравнения: в современной атмосфере его содержится 21 %). В такой атмосфере могли содержаться аммиак, двуокись углерода, метан и водяной пар. Бескислородный характер первичной атмосферы приводит к двум важнейшим следствиям.

Во-первых, в отсутствие кислорода не образуется озоновый слой, который в современной атмосфере располагается на высоте около 20 км и поглощает 99 % ультрафиолетового излучения Солнца. Оно оказывает губительное воздействие на живые ткани, поэтому первые организмы должны были «скрываться» от него под слоем воды или горных пород.

Во-вторых, образовавшиеся органические молекулы не подвергались окислению и могли участвовать в дальнейших реакциях (в условиях окислительной атмосферы объекты органического происхождения, не защищенные клеточными мембранами, разлагаются под действием кислорода, что происходит, например, после гибели живого организма и разрушении клеточной стенки).

Первые эксперименты, моделирующие первичную атмосферу Земли были поставлены в 1953 г. американским ученым Стэнли Миллером (род. в 1930 г.). Его установка представляла собой колбу, внутри которой создавались электрические разряды. В колбе находилась вода и различные газы, предположительно входящие в состав первичной атмосферы (водород, метан, аммиак и др.). Свободный кислород в системе отсутствовал. При нагревании в установке происходила постоянная циркуляция водяного пара и газов. После нескольких дней эксперимента в колбе образовывались простейшие органические соединения: аминокислоты (строительный материал для белков), азотистые основания (компоненты нуклеиновых кислот) и некоторые другие вещества. Их концентрация возрастала по мере убывания исходных компонентов. Вслед за опытами Миллера последовали аналогичные эксперименты.

Разнообразие экспериментов позволяет предположить, что неорганический синтез органических соединений мог быть достаточно распространенным явлением в прошлом нашей планеты. Академик А. И. Опарин считал, что такие реакции происходили в морях и океанах и сопровождались увеличением концентрации образующихся органических веществ, при этом водная среда становилась «первичным бульоном», способным к дальнейшей эволюции.

Однако образование органических молекул и их полимеризация являются только началом в длинной цепочке эволюции, которая привела к появлению первых живых клеток, поскольку отдельно взятый белок еще не обладает специфическими свойствами, присущими организму в целом. Поэтому на смену химической эволюции должна была прийти биологическая.

Согласно гипотезе А. И. Опарина, предками настоящих клеток были протоклеточные структуры, способные к простейшему обмену с окружающей средой.

Они называются коацерватами (от латинского coacervus – сгусток). Взаимодействие нескольких органических молекул приводит к сближению их полярных концов и образованию «коацерватной капли».

Возникающие коацерваты обладали значительно бóльшими возможностями, чем отдельные молекулы, поскольку могли поглощать из окружающей среды другие вещества. Появились примитивные мембраны, которые не только выполняли защитные функции, но и способствовали дальнейшему обособлению коацерватов от окружающей среды.

Шла дифференциация свойств молекул внутри коацерватов: белки оказались способными регулировать ход химических реакций, приводящих к появлению новых органических веществ, а нуклеотидные цепи постепенно приобрели возможность удваиваться по принципу дополнения. Дальнейшая эволюция этих важнейших свойств привела к появлению наследственного генетического кода, несущего информацию о строении белковых молекул. Таким образом, развитие коацерватов привело к появлению первых примитивных клеток, не имеющих ядра. Это произошло более 4 млрд. лет назад.

Постепенно запасы органических веществ, необходимых для питания, истощались, и у некоторых клеток возникла способность использовать солнечную энергию для синтеза органических веществ из неорганических соединений углерода. Так появились организмы, способные к фотосинтезу.

Фотосинтез – процесс преобразования солнечной энергии в энергию химических связей органических веществ.

Сначала фотосинтез шел без образования молекулярного кислорода. В ходе дальнейшей эволюции организмы стали выделять кислород. Это произошло около 4 млрд. лет назад.

Обогащение атмосферы свободным кислородом привело со временем к образованию озона, поглощающего коротковолновое ультрафиолетовое излучение, опасное для живых организмов. Кроме того, возникло дыхание – способ обмена веществ, при котором расщепление органических веществ происходит с участием кислорода.

В дальнейшем происходило усложнение клеточного строения и около 2 млрд. лет назад появились первые клетки, имеющие ядро и внутриклеточные структуры.

Следующим эволюционным шагом в развитии организмов стало появление многоклеточных форм жизни примерно 1,3 млрд. лет назад.

Подтверждением некоторых положений биохимической теории происхождения и развития жизни могут служить ископаемые остатки организмов, обнаруживаемые в древнейших горных породах.