
- •Часть I. Общая микробиология 17
- •Глава 1. Введение в микробиологию
- •Глава 2. Морфология и классификация
- •Глава 3. Физиология микробов 50
- •Глава 4. Экология микробов — микроэкология...82
- •Глава 5. Генетика микробов (м.Н. Бойченко).. 104
- •Глава 6. Биотехнология.
- •Глава 7. Противомикробные препараты
- •Глава 8. Учение об инфекции (а.Ю. Миронов, ю.В. Несвижский, д. Н. Нечаев) 136
- •Часть II. Общая иммунология 183
- •Глава 9. Учение об иммунитете и факторы неспецифической резистентности
- •Глава 10. Антигены и иммунная система
- •Глава 11. Основные формы иммунного реагирования
- •Глава 12. Особенности иммунитета
- •Глава 13. Иммунодиагностические реакции и их применение
- •Глава 14. Иммунопрофилактика
- •Часть III. Частная микробиология.. 310
- •Глава 15 Микробиологическая и иммунологи ческая диагностика (а.Ю Миронов) 310
- •Глава 16. Частная бактериология 327
- •Глава 17. Частная вирусология520
- •Глава 18. Частная микология 616
- •Глава 19. Частная протозоология
- •Глава 20. Клиническая микробиология
- •Часть I.
- •Глава 1. Введение в микробиологию и иммунологию
- •1.2. Представители мира микробов
- •1.3. Распространенность микробов
- •1.4. Роль микробов в патологии человека
- •1.5. Микробиология — наука о микробах
- •1.6. Иммунология — сущность и задачи
- •1.7. Связь микробиологии с иммунологией
- •1.8. История развития микробиологии и иммунологии
- •1.9. Вклад отечественных ученых в развитие микробиологии и иммунологии
- •1.10. Зачем нужны знания микробиологии и иммунологии врачу
- •Глава 2. Морфология и классификация микробов
- •2.1. Систематика и номенклатура микробов
- •2.2. Классификация и морфология бактерий
- •2.3. Строение и классификация грибов
- •2.4. Строение и классификация простейших
- •2.5. Строение и классификация вирусов
- •Глава 3. Физиология микробов
- •3.2. Особенности физиологии грибов и простейших
- •3.3. Физиология вирусов
- •3.4. Культивирование вирусов
- •3.5. Бактериофаги (вирусы бактерий)
- •Глава 4. Экология микробов - микроэкология
- •4.1. Распространение микробов в окружающей среде
- •4.3. Влияние факторов окружающей среды на микробы
- •4.4 Уничтожение микробов в окружающей среде
- •4.5. Санитарная микробиология
- •Глава 5. Генетика микробов
- •5.1. Строение генома бактерий
- •5.2. Мутации у бактерий
- •5.3. Рекомбинация у бактерий
- •5.4. Передача генетической информации у бактерий
- •5.5. Особенности генетики вирусов
- •Глава 6. Биотехнология. Генетическая инженерия
- •6.1. Сущность биотехнологии. Цели и задачи
- •6.2. Краткая история развития биотехнологии
- •6.3. Микроорганизмы и процессы, применяемые в биотехнологии
- •6.4. Генетическая инженерия и область ее применения в биотехнологии
- •Глава 7. Противомикробные препараты
- •7.1. Химиотерапевтические препараты
- •7.2. Механизмы действия противомикроб-ных химиопрепаратов
- •7.3. Осложнения при антимикробной химиотерапии
- •7.4. Лекарственная устойчивость бактерий
- •7.5. Основы рациональной антибиотикотерапии
- •7.6. Противовирусные средства
- •7.7. Антисептические и дезинфицирующие вещества
- •Глава 8. Учение об инфекции
- •8.1. Инфекционный процесс и инфекционная болезнь
- •8.2. Свойства микробов — возбудителей инфекционного процесса
- •8.3. Свойства патогенных микробов
- •8.4. Влияние факторов окружающей среды на реактивность организма
- •8.5. Характерные особенности инфекционных болезней
- •8.6. Формы инфекционного процесса
- •8.7. Особенности формирования патоген-ности у вирусов. Формы взаимодействия вирусов с клеткой. Особенности вирусных инфекций
- •8.8. Понятие об эпидемическом процессе
- •ЧаСть II.
- •Глава 9. Учение об иммунитете и факторы неспецифической резистентности
- •9.1. Введение в иммунологию
- •9.2. Факторы неспецифической резистентности организма
- •Глава 10. Антигены и иммунная система человека
- •10.2. Иммунная система человека
- •Глава 11. Основные формы иммунного реагирования
- •11.1. Антитела и антителообразование
- •11.2. Иммунный фагоцитоз
- •11.4. Реакции гиперчувствительности
- •11.5. Иммунологическая память
- •Глава 12. Особенности иммунитета
- •12.1. Особенности местного иммунитета
- •12.2. Особенности иммунитета при различных состояниях
- •12.3. Иммунный статус и его оценка
- •12.4. Патология иммунной системы
- •12.5. Иммунокоррекция
- •Глава 13. Иммунодиагностические реакции и их применение
- •13.1. Реакции антиген—антитело
- •13.2. Реакции агглютинации
- •13.3. Реакции преципитации
- •13.4. Реакции с участием комплемента
- •13.5. Реакция нейтрализации
- •13.6. Реакции с использованием меченых антител или антигенов
- •13.6.2. Иммуноферментный метод, или анализ (ифа)
- •Глава 14. Иммунопрофилактика и иммунотерапия
- •14.1. Сущность и место иммунопрофилактики и иммунотерапии в медицинской практике
- •14.2. Иммунобиологические препараты
- •Часть III
- •Глава 15. Микробиологическая и иммунологическая диагностика
- •15.1. Организация микробиологической и иммунологической лабораторий
- •15.2. Оснащение микробиологической и иммунологической лабораторий
- •15.3. Правила работы
- •15.4. Принципы микробиологической диагностики инфекционных болезней
- •15.5. Методы микробиологической диагностики бактериальных инфекций
- •15.6. Методы микробиологической диагностики вирусных инфекций
- •15.7. Особенности микробиологической диагностики микозов
- •15.9. Принципы иммунологической диагностики болезней человека
- •Глава 16. Частная бактериология
- •16.1. Кокки
- •16.2. Палочки грамотрицательные факультативно-анаэробные
- •16.3.6.5. Ацинетобактер (род Acinetobacter)
- •16.4. Палочки грамотрицательные анаэробные
- •16.5. Палочки спорообразующие грамположительные
- •16.6. Палочки грамположительные правильной формы
- •16.7. Палочки грамположительные неправильной формы, ветвящиеся бактерии
- •16.8. Спирохеты и другие спиральные, изогнутые бактерии
- •16.12. Микоплазмы
- •16.13. Общая характеристика бактериальных зоонозных инфекций
- •Глава 17. Частная вирусология
- •17.3. Медленные вирусные инфекции и прионные болезни
- •17.5. Возбудители вирусных острых кишечных инфекций
- •17.6. Возбудители парентеральных вирусных гепатитов в, d, с, g
- •17.7. Онкогенные вирусы
- •Глава 18. Частная микология
- •18.1. Возбудители поверхностных микозов
- •18.2. Возбудители эпидермофитии
- •18.3. Возбудители подкожных, или субкутанных, микозов
- •18.4. Возбудители системных, или глубоких, микозов
- •18.5. Возбудители оппортунистических микозов
- •18.6. Возбудители микотоксикозов
- •18.7. Неклассифицированные патогенные грибы
- •Глава 19. Частная протозоология
- •19.1. Саркодовые (амебы)
- •19.2. Жгутиконосцы
- •19.3. Споровики
- •19.4. Ресничные
- •19.5. Микроспоридии (тип Microspora)
- •19.6. Бластоцисты (род Blastocystis)
- •Глава 20. Клиническая микробиология
- •20.1. Понятие о внутрибольничной инфекции
- •20.2. Понятие о клинической микробиологии
- •20.3. Этиология вби
- •20.4. Эпидемиология вби
- •20.7. Микробиологическая диагностика вби
- •20.8. Лечение
- •20.9. Профилактика
- •20.10. Диагностика бактериемии и сепсиса
- •20.11. Диагностика инфекций мочевыводящих путей
- •20.12. Диагностика инфекций нижних дыхательных путей
- •20.13. Диагностика инфекций верхних дыхательных путей
- •20.14. Диагностика менингитов
- •20.15. Диагностика воспалительных заболеваний женских половых органов
- •20.16. Диагностика острых кишечных инфекций и пищевых отравлений
- •20.17. Диагностика раневой инфекции
- •20.18. Диагностика воспалений глаз и ушей
- •20.19. Микрофлора полости рта и ее роль в патологии человека
- •20.19.1. Роль микроорганизмов при заболеваниях челюстно-лицевой области
3.2. Особенности физиологии грибов и простейших
Грибы по типу питания — гетеротрофы, по отношению к кислороду — аэробы и факультативные анаэробы. Растут в широких диапазонах температур (оптимальная температура 25—30 °С), имеют половой и бесполый способы размножения. Поэтому грибы широко распространены в окружающей среде, особенно в почве. Грибы вместе с сине-зелеными водорослями образуют симбиоз в виде лишайника. В этом симбиозе грибы поглощают воду и растворимые в ней вещества, а сине-зеленые водоросли поставляют грибам органические соединения. Другой вид взаимоотношений — микориза — симбиоз грибов и корней высших растений.
Грибы культивируют в течение нескольких суток на сусле-агаре или жидком сусле, среде Сабуро, Чапека и др. Для этой цели можно использовать лабораторных животных.
Некоторые грибы обладают диморфизмом, т. е. способностью образовывать нитчатые и дрожжевые формы в зависимости от условий роста. Дрожжеподобные формы часто образуются in vivo, т. е. при инфицировании человека грибами.
Простейшие имеют органы движения (жгутики, реснички, псевдоподии), питания (пищеварительные вакуоли) и выделения (сократительные вакуоли). По типу питания они могут быть гетеротрофами или аутотрофами. Размножаются бесполым и половым путями. Некоторые простейшие имеют сложный жизненный цикл, сопровождающийся сме-
ной форм развития, полового и бесполого размножения, образуют цисты.
Многие простейшие (дизентерийная амеба, лямблии, трихомонады, лейшмании, балан-тидии) могут расти на питательных средах, содержащих нативные белки и аминокислоты. Для их культивирования используются также культуры клеток (тканей), куриные эмбрионы и лабораторные животные.
3.3. Физиология вирусов
Вирусы — облигатные внутриклеточные паразиты, способные только к внутриклеточному размножению. В вирусинфицированной клетке возможно пребывание вирусов в различных состояниях:
воспроизводство многочисленных новых вирионов;
пребывание нуклеиновой кислоты вируса в интегрированном состоянии с хромосомой клетки (в виде провируса);
существование в цитоплазме клетки в виде кольцевых нуклеиновых кислот, напоминающих плазмиды бактерий.
Поэтому диапазон нарушений, вызываемых вирусом, весьма широк: от выраженной продуктивной инфекции, завершающейся гибелью клетки, до продолжительного взаимодействия вируса с клеткой в виде латентной инфекции или злокачественной трансформации клетки.
Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и ин-тегративный.
Продуктивный тип — завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитоли-тическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).
Абортивный тип — не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.
Интегративный тип, или вирогения — характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).
3.3.1. Репродукция вирусов
Продуктивный тип взаимодействия вируса с клеткой, т. е. репродукция вируса (лат. re — повторение, productio — производство), проходит в 6 стадий: 1) адсорбция вирионов на клетке; 2) проникновение вируса в клетку; 3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса); 4) синтез вирусных компонентов; 5) формирование вирионов; 6) выход вирионов из клетки. У различных вирусов эти стадии отличаются (рис. 3.7-3.10).
Адсорбция вирусов. Первая стадия репродукции вирусов — адсорбция, т. е. прикрепление вириона к поверхности клетки. Она протекает в две фазы. Первая фаза — неспецифическая, обусловленная ионным притяжением между вирусом и клеткой, включая и другие механизмы. Вторая фаза адсорбции — высокоспецифическая, обусловленная гомологией, комплемен-тарностью рецепторов чувствительных клеток и «узнающих» их белковых лигандов вирусов. Белки на поверхности вирусов, узнающие специфические клеточные рецепторы и взаимодействующие с ними, называются прикрепительными белками (в основном это гликопроте-ины) в составе липопротеиновой оболочки.
Специфические рецепторы клеток имеют различную природу, являясь белками, липи-дами, углеводными компонентами белков, ли-пидов и др. Так, рецепторами для вируса гриппа является сиаловая кислота в составе гли-копротеинов и гликолипидов (ганглиозидов) клеток дыхательных путей. Вирусы бешенства адсорбируются на ацетилхолиновых рецепторах нервной ткани, а вирусы иммунодефицита человека — на СD4-рецепторах Т-хелперов, моноцитов и дендритных клеток. На одной клетке находится от десяти до ста тысяч специфических рецепторов, поэтому на ней могут адсорбироваться десятки и сотни вирионов.
Наличие специфических рецепторов лежит в основе избирательности поражения вирусами определенных клеток, тканей и органов. Это так называемый тропизм (греч. tropos — поворот, направление). Например, вирусы, репродуцирующиеся преимущественно в клетках печени, называются гепатотропны-ми, в нервных клетках — нейротропными, в
иммунокомпетентных клетках — иммунот-ропными и т. д.
Проникновение вирусов в клетку. Вирусы проникают в клетку путем рецептор-зависимого эндоцитоза (виропексиса), или слияния оболочки вируса с клеточной мембраной, или же в результате сочетания этих механизмов.
1. Рецептор-зависимый эндоцитоз происходит в результате захватывания и поглощения вириона клеткой: клеточная мембрана с прикрепленным вирионом впячивается с образованием внутриклеточной вакуоли (эн-досомы), содержащей вирус. За счет АТФ-зависимого «протонного» насоса содержимое эндосомы закисляется, что приводит к слиянию липопротеиновой оболочки сложно организованного вируса с мембраной эндосомы
и выходу вирусного нуклеокапсида в цитозоль клетки. Эндосомы объединяются с лизосома-ми, которые разрушают оставшиеся вирусные компоненты. Процесс выхода безоболочеч-ных (просто организованных) вирусов из эндосомы в цитозоль остается малоизученным. 2. Слияние оболочки вириона с клеточной мембраной характерно только для некоторых оболо-чечных вирусов (парамиксовирусов, ретровиру-сов, герпесвирусов), в составе которых имеются белки слияния. Происходит точечное взаимодействие вирусного белка слияния с липидами клеточной мембраны, в результате чего вирусная липопротеиновая оболочка интегрирует с
клеточной мембраной, а внутренний компонент вируса попадает в цитозоль клетки. «Раздевание» (депротеинизация) вирусов. В
результате депротеинизации удаляются поверхностные структуры вируса и высвобождается его внутренний компонент, способный вызывать инфекционный процесс. Первые этапы «раздевания» вируса начинаются в процессе его проникновения в клетку путем слияния вирусных и клеточных мембран или же при выходе вируса из эндосомы в цитозоль. Последующие этапы «раздевания» вируса тесно взаимосвязаны с их внутриклеточным транспортом к местам депротеинизации. Для разных вирусов существуют свои специализированные участки «раздевания» в клетке: для пикорнави-русов — в цитоплазме с участием лизосом, аппарата Гольджи; для герпесвирусов — околоядерное пространство или поры ядерной мембраны; для аденовирусов — сначала структуры цитоплазмы, а затем ядро клетки. Конечными продуктами «раздевания» могут быть нуклеиновая кислота, нуклеопротеин (нуклеокапсид)
или сердцевина вириона. Так, конечным продуктом «раздевания» пикорнавирусов является нуклеиновая кислота, ковалентно связанная с одним из внутренних белков. А у многих оболочечных РНК-содержащих вирусов конечными продуктами «раздевания» могут быть нуклеокапсиды или сердцевины, которые не только не препятствуют экспрессии вирусного генома, а, более того, защищают его от клеточных протеаз и регулируют последующие биосинтетические процессы.
Синтез вирусных компонентов. Следующей стадией репродукции является синтез белков и
нуклеиновых кислот вируса, который разобщен во времени и пространстве. Синтез осуществляется в разных частях клетки, поэтому такой способ размножения вирусов называется дизъюнктивным (от лат. disjunctus — разобщенный).
Синтез вирусных белков. В зараженной клетке вирусный геном кодирует синтез двух групп белков: неструктурных белков, обслуживающих внутриклеточную репродукцию вируса на разных его этапах; структурных белков, которые входят в состав вириона (геномные, связанные с геномом вируса, капсидные и су-перкапсидные белки). К неструктурным белкам относятся: 1) ферменты синтеза РНК или ДНК (РНК- или ДНК-полимеразы), обеспечивающие транскрипцию и репликацию вирусного генома; 2) белки-регуляторы; 3) предшественники вирусных белков, отличающиеся своей нестабильностью в результате быстрого нарезания на структурные белки; 4) ферменты, модифицирующие вирусные белки, например, протеиназы и протеинкиназы.
Синтез белков в клетке осуществляется в соответствии с хорошо известными процессами транскрипции (от лат. transcriptio — переписывание) путем «переписывания» генетической информации с нуклеиновой кислоты в нуклео-тидную последовательность информационной РНК (иРНК) и трансляции (от лат. translatio — передача) — считывания иРНК на рибосомах с образованием белков. Передача наследственной информации в отношении синтеза иРНК у разных групп вирусов неодинакова.
□ ДНК-содержащие вирусы реализуют ге нетическую информацию так же, как и кле точный геном, по схеме:
геномная ДНК вируса -> транскрипция иРНК -»трансляция белка вируса.
Причем ДНК-содержащие вирусы используют для этого процесса клеточную поли-меразу (вирусы, геномы которых транскрибируются в ядре клетки — аденовирусы, па-повавирусы, герпесвирусы) или собственную РНК-полимеразу (вирусы, геномы которых транскрибируются в цитоплазме, например поксвирусы).
□ Плюс-нитевые РНК-содержашие вирусы (например, пикорнавирусы, флавивирусы, то-
гавирусы) имеют геном, выполняющий функцию иРНК; он распознается и транслируется рибосомами. Синтез белков у этих вирусов осуществляется без акта транскрипции по схеме:
геномная РНК вируса —>трансляция белка вируса.
а Геном минус-однонитевых РНК-содержаших вирусов (ортомиксовирусов, парамиксовирусов, рабдовирусов) и двунитевых (реовирусов) служит матрицей, с которой транскрибируется иРНК при участии РНК-полимеразы, связанной с нуклеиновой кислотой вируса. Синтез белка у них происходит по схеме:
геномная РНК вируса -> транскрипция иРНК -» трансляция белка вируса. ]
а Ретровирусы (вирусы иммунодефицита человека, онкогенные ретровирусы) имеют уникальный путь передачи генетической информации. Геном ретровирусов состоит из двух идентичных молекул РНК, т. е. является диплоидным. В составе ретровирусов есть особый вирусоспецифический фермент — обратная транскриптаза, или ревертаза, с помощью которой осуществляется процесс обратной транскрипции, т. е. на матрице геномной РНК синтезируется комплементарная однонитевая ДНК (кДНК). Комплементарная нить ДНК копируется с образованием двунитевой комплементарной ДНК, которая интегрирует в клеточный геном и в его составе транскрибируется в иРНК с помощью клеточной ДНК-зависимой РНК-полимеразы. Синтез белков для этих вирусов осуществляется по схеме:
геномная РНК вируса -> комплементарная ДНК -> транскрипция иРНК —> транс-ляция белка вируса.
Репликация вирусных геномов, т. е. синтез вирусных нуклеиновых кислот, приводит к накоплению в клетке копий исходных вирусных геномов, которые используются при сборке ви-рионов. Способ репликации генома зависит от типа нуклеиновой кислоты вируса, наличия ви-русоспецифических или клеточных полимераз, а также от способности вирусов индуцировать
образование полимераз в клетке. Механизм репликации отличается у вирусов, имеющих: 1) двунитевую ДНК; 2) однонитевую ДНК; 3) плюс-однонитевую РНК; 4) минус-одноните-вую РНК; 5) двунитевую РНК; 6) идентичные плюс-нитевые РНК (ретровирусы).
1. Двунитевые ДНК-вирусы. Репликация дву-нитевых вирусных ДНК происходит обычным полуконсервативным механизмом: после рас-плетения нитей ДНК к ним комплементарно достраиваются новые нити. Каждая вновь синтезированная молекула ДНК состоит из одной родительской и одной вновь синтезированной нити. К этим вирусам относится большая группа вирусов, которые содержат двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме, как папилломавирусы. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.
Уникальный механизм репликации характерен для гепаднавирусов (вируса гепатита В). Геном гепаднавирусов представлен дву-нитевой кольцевой ДНК, одна нить которой короче (неполная плюс-нить) другой нити. Первоначально достраивается (рис. 3.7). Затем полная двунитевая ДНК с помощью клеточной ДНК-зависимой РНК-полимеразы транскрибируется с образованием небольших молекул иРНК и полной однонитевой плюс-РНК. Последняя называется прегеномной РНК; она является матрицей для репликации генома вируса. Синтезированные иРНКучаствуют в процессе трансляции белков, в том числе вирусной РНК-зависимой ДНК-полимеразы (обратной транскриптазы). С помощью этого фермента мигрирующая в цитоплазму прегеномная РНК обратно транскрибируется в минус-нить ДНК, которая, в свою очередь, служит матрицей для синтеза плюс-нити ДНК. Этот процесс заканчивается образованием двунитевой ДНК, содержащей неполную плюс-нить ДНК.
2. Однонитевые ДНК-вирусы. Единственными представителями однонитевых ДНК-вирусов являются парвовирусы. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы последнего. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется
минус-нить ДНК, служащая матрицей для синтеза плюс-нити ДНК нового вириона. Параллельно синтезируется иРНК, происходит трансляция вирусных пептидов.
Плюс-однонитевые РНК-вирусы. Эти вирусы включают большую группу вирусов — пи-корнавирусы, флавивирусы, тогавирусы (рис. 3.8), у которых геномная плюс-нить РНК выполняет функцию иРНК. Например, РНК полиовирусов после проникновения в клетку связывается с рибосомами, работая как и РНК, и на ее основе синтезируется большой полипептид, который расщепляется на фрагменты: РНК-зависимую РНК-полимеразу, вирусные протеазы и капсидные белки. Полимераза на основе геномной плюс-нити РНК синтезирует минус-нить РНК; формируется временно двойная РНК, названная промежуточным репликативным звеном. Это промежуточное репликативное звено состоит из полной плюс-нити РНК и многочисленных частично завершенных минус-нитей. Когда образованы все минус-нити, они используются как шаблоны для синтеза новых плюс-нитей РНК. Этот механизм используется как для размножения геномной РНК вируса, так и для синтеза большого количества вирусных белков.
Минус-однонитевые РНК-вирусы. Минус -однонитевые РНК-вирусы (рабдовирусы, па-рамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полимеразу. Проникшая в клетку геномная минус-нить РНК трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль и РНК для синтеза вирусных белков. Полные копии являются матрицей (промежуточная стадия) для синтеза минус-нитей геномной РНК потомства (рис. 3.9).
Двунитевые РНК-вирусы. Механизм репликации этих вирусов (реовирусов и ротави-русов) сходен с репликацией минус-однони-тевых РНК-вирусов. Отличие состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они являются матрицами для синтеза минус-нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеино-
вых кислот этих вирусов происходит в цитоплазме клеток.
6. Ретровирусы (плюс-нитевые диплоидные РНК-содержащие вирусы). Обратная транс-криптаза ретровирусов синтезирует (на матрице РНК-вируса) минус-нить ДНК, с которой копируется плюс-нить ДНК с образованием двойной нити ДНК, замкнутой в кольцо (рис. 3.10). Далее двойная нить ДНК интегрирует с хромосомой клетки, образуя провирус. Многочисленные вирионные РНК образуются в результате транскрипции одной из нитей интегрированной ДНК при участии клеточной ДНК-зависимой РНК-полимеразы.
Формирование вирусов. Вирионы формируются путем самосборки: составные части ви-риона транспортируются в места сборки вируса — участки ядра или цитоплазмы клетки. Соединение компонентов вириона обусловлено наличием гидрофобных, ионных, водородных связей и стерического соответствия.
Существуют следующие общие принципы сборки вирусов:
Формирование вирусов — многоступенчатый процесс с образованием промежуточных форм, отличающихся от зрелых вирионов по составу полипептидов.
Сборка просто устроенных вирусов заключается во взаимодействии вирусных нуклеиновых кислот с капсидными белками и в образовании нуклеокапсидов.
У сложноустроенных вирусов сначала формируются нуклеокапсиды, которые взаимодействуют с модифицированными мембранами клеток (будущей липопротеиновой оболочкой вируса). Причем сборка вирусов, реплицирующихся в ядре клетки, происходит с участием мембраны ядра, а сборка вирусов, репликация которых идет в цитоплазме, осуществляется с участием мембран эндоплазматической сети или плазматической мембраны, куда встраиваются гликопротеины и другие белки оболочки вируса.
У ряда сложноустроенных вирусов минус-нитевых РНК-вирусов (ортомиксовирусов, па-рамиксовирусов) в сборку вовлекается так называемый матриксный белок (М-белок), который расположен под модифицированной клеточной мембраной. Обладая гидрофобными свойствами, он выполняет роль посредника между нуклеокап-сидом и вирусной липопротеиновой оболочкой.
□ Сложноустроенные вирусы в процессе формирования включают в свой состав неко торые компоненты клетки хозяина, например липиды и углеводы.
Выход вирусов из клетки. Полный цикл репродукции вирусов завершается через 5—6 ч (вирус гриппа и др.) или через несколько суток (гепатовирусы, вирус кори и др.). Процесс репродукции вирусов заканчивается выходом их из клетки, который происходит взрывным путем или почкованием, экзоцитозом.
Взрывной путь: из погибающей клетки одновременно выходит большое количество вирионов. По взрывному пути выходят из клетки просто устроенные вирусы, не имеющие липопротеиновой оболочки.
Почкование, экзоцитоз присущи вирусам, имеющим липопротеиновую оболочку, которая является производной от клеточных мембран. Сначала образовавшийся нуклеокапсид или сердцевина вириона транспортируется к клеточным мембранам, в которые уже встроены вирусоспецифические белки. Затем в области контакта нуклеокапсида или сердцевины вириона с клеточной мембраной начинается выпячивание этих участков. Сформировавшаяся почка отделяется от клетки в виде сложно устроенного вируса. При этом клетка способна длительно сохранять жизнеспособность и продуцировать вирусное потомство.
Почкование вирусов, формирующихся в цитоплазме, может происходить либо через плазматическую мембрану (например, пара-миксовирусы, тогавирусы — рис. 3.2 и 3.3). либо через мембраны эндоплазматической сети с последующим их выходом на поверхность клетки (например, буньявирусы).
Вирусы, формирующиеся в ядре клетки (например, герпесвирусы). почкуются в пери-нуклеарное пространство через модифицированную ядерную мембрану, приобретая таким образом липопротеиновую оболочку. Затем они транспортируются в составе цитоплазма-тических везикул на поверхность клетки.
3.3.2. Абортивный тип взаимодействия вирусов с клеткой
Этот тип взаимодействия не завершается образованием вирусного потомства и может возникать при следующих обстоятельствах:
1) заражение чувствительных клеток дефект ными вирусами или дефектными вирионами;
заражение стандартным вирусом генетически резистентных к нему клеток;
заражение стандартным вирусом чувствительных клеток в непермиссивных (неразрешающих) условиях.
Различают дефектные вирусы и дефектные вирионы.
Дефектные вирусы существуют как самостоятельные виды, которые репродуцируются лишь при наличии вируса-помощника (например, вирус гепатита D репродуцируется только в присутствии вируса гепатита В).
Дефектные вирионы обычно лишены части генетического материала и могут накапливаться в популяции многих вирусов при множественном заражении клеток.
Абортивный тип взаимодействия чаще наблюдается при заражении нечувствительных клеток стандартным вирусом. Механизм генетически обусловленной резистентности клеток к вирусам широко варьирует. Он может быть связан: с отсутствием на плазматической мембране специфических рецепторов для вирусов; с неспособностью данного вида клеток инициировать трансляцию вирусной иРНК; с отсутствием специфических протеаз или нуклеаз, необходимых для синтеза вирусных макромолекул, и т. д.
Абортивный тип взаимодействия может также возникать при изменении условий, в которых происходит репродукция вирусов: повышение температуры организма, изменение рН в очаге воспаления, введение в организм противовирусных препаратов и др. При устранении неразрешающих условий абортивный тип переходит в продуктивный тип взаимодействия вирусов с клеткой.
3.3.3. Интегративный тип взаимодействия вирусов с клеткой (вирогения)
Это взаимное сосуществование вируса и клетки в результате интеграции (встраивания) нуклеиновой кислоты вируса в хромосому клетки хозяина. При этом интегрированный геном вируса реплицируется и
функционирует как составная часть генома клетки.
Интегративный тип взаимодействия характерен для умеренных ДНК-содержащих бактериофагов, онкогенных вирусов и некоторых инфекционных вирусов как ДНК-содержащих (например, вируса гепатита В), так и РНК-содержащих (например, вируса иммунодефицита человека). Для интеграции с геномом клетки необходимо наличие кольцевой формы двунитевой ДНК-вируса. Геном ДНК-содержащих вирусов в кольцевой форме прикрепляется к клеточной ДНК в месте гомологии нуклеотидных последовательностей и встраивается в определенный участок хромосомы при участии ряда ферментов (рестриктаз, эндонуклеаз, лигаз). У РНК-содержаших вирусов процесс интеграции более сложный. Он начинается с механизма обратной транскрипции, который заключается в синтезе комплементарной нити ДНК на матрице вирусной РНК с помощью вирусоспецифического фермента обратной транскриптазы (ревертазы). После образования двунитевой ДНК и замыкания ее в кольцо происходит интеграция ДНК-транскрипта в хромосому клетки (рис. 3.4). Встроенная в хромосому клетки ДНК вируса называется провирусом, или провирус -ной ДНК. Провирус реплицируется в составе хромосомы и переходит в геном дочерних клеток, т. е. состояние вирогении наследуется. Однако под влиянием некоторых физических или химических факторов провирус может исключаться из хромосомы клетки и переходить в автономное состояние с развитием продуктивного типа взаимодействия с клеткой.
Дополнительная генетическая информация провируса при вирогении сообщает клетке новые свойства, что может быть причиной онкогенной трансформации клеток и развития опухолей, а также развития аутоиммунных и хронических заболеваний. Сохранение вирусной информации в виде провируса в составе клеточного генома и передача ее потомству лежит в основе персистенции (лат. persistentia — упорство, постоянство) вирусов в организме и развития латентных (скрытых) вирусных инфекций.