
- •Методы нейроинформатики
- •Фцп "интеграция"
- •Предисловие редактора
- •Моделирование данных при помощи кривыхдля восстановления пробелов в таблицах
- •660036, Красноярск-36, ивм со ран,
- •1. Общая схема метода
- •2. Итерационный метод главных компонент для данных с пропусками
- •3. Квазилинейные факторы и формулы Карлемана
- •4. Нейронный конвейер
- •Литература
- •Финитность и детерминированность простых программ для кинетической машины кирдина
- •660036, Красноярск-36, ивм со ран,
- •1. Введение
- •2. Понятие кинетической машины Кирдина
- •3. Модели выполнения программы
- •3.1. Последовательная модель
- •3.2. Параллельно-последовательная модель
- •3.3. Максимальная параллельно-последовательная модель
- •4. Программы, состоящие из одной команды
- •4.1. Распад
- •4.2. Синтез
- •4.3. Прямая замена
- •5. Заключение
- •ЛитературА
- •Алгоритмическая универсальность кинетической машины кирдина
- •660036, Красноярск-36, ивм со ран,
- •Литература
- •Погрешности нейронных сетей. Вычисление погрешностей весов синапсов
- •660036, Красноярск-36, ивм со ран,
- •1. Введение
- •2. Структура сети
- •3. Два базовых подхода к оценкам погрешности
- •4. Погрешности весов синапсов
- •5. Гарантированные интервальные оценки погрешностей весов синапсов
- •6. Среднеквадратические оценки погрешностей весов синапсов
- •7. Заключение
- •Литература
- •Нейросетевые методы обработки информации в задачах прогноза климатических характеристик и лесорастительных свойств ландшафтных зон
- •660036, Красноярск-36, ивм со ран,
- •Введение
- •1. Проблемы обработки таблиц экспериментальных данных
- •2. Искусственные нейронные сети
- •2.1. Элементы нейронных сетей
- •2.2. Архитектуры нейронных сетей
- •2.3. Решение задач нейронными сетями
- •2.4. Подача входных сигналов и снятие выходных сигналов сети
- •2.5. Обучение нейронных сетей
- •2.6. Вычисление градиента функции оценки по подстроечным параметрам сети
- •2.7. Факторы, влияющие на обучение нейронной сети
- •2.8. Упрощение нейронных сетей
- •2.9 Вычисление показателей значимости параметров и входных сигналов сети
- •3. Транспонированная задача регрессии
- •4. Применение нейросетевых технологий для обработки таблицы климатических данных
- •4.1. Заполнение пропусков в таблице климатических данных
- •4.2. Построение классификационной модели ландшафтных зон и секторов континентальности
- •4.2.1. Классификация ландшафтных зон Сибири
- •4.2.2. Идентификация лесных зон по континентальности
- •4.3. Прогнозирование возможного изменения ландшафтных зон и секторов континентальности
- •5. Заключение
- •Литература
- •Интуитивное предсказание нейросетями взаимоотношений в группе
- •660049, Красноярск, пр. Мира 82
- •1. Проблема оценки взаимоотношений
- •2. Общая задача экспериментов
- •3. Применяемые в экспериментах психологические методики
- •4. Эксперименты по предсказанию группового статуса
- •5. Нейросетевое исследование структуры опросника
- •6. Оценка оптимизации задачника нейросетью с позиций теории информации
- •7 Эксперименты по предсказанию парных взаимоотношений
- •Литература
- •Аппроксимация многомерных функций полутораслойным предиктором с произвольными преобразователями
- •660049, Красноярск, пр. Мира 82
- •1. Постановка проблемы
- •2. Аналитическое решение
- •3. Запись решения в идеологии нейросетей
- •4. Алгоритмическая часть
- •5. Оценка информационной емкости нейронной сети при помощи выборочной константы Липшица
- •6. Соглашение о терминологии
- •7. Компоненты сети
- •8. Общий элемент сети
- •9. Вход сети
- •10. Выход сети
- •11. Синапс сети
- •12. Тривиальный сумматор
- •13. Нейрон
- •14. Поток сети
- •15. Скомпонованная полутораслойная поточная сеть
- •Литература
- •Использование нейросетевых технологий при решении аналитических задач в гис
- •660036, Красноярск-36, ивм со ран,
- •Литература
- •Использование нейросетевых технологий для проведения учебно-исследовательских работ
- •1. Введение
- •2. Зимняя Политехническая Школа по Нейроинформатике
- •3. Задачи
- •4. Результаты
- •5. Перспективы
- •Литература
- •Производство полуэмпирических знаний из таблиц данных с помощью обучаемых искусственных нейронных сетей
- •660036, Красноярск-36, ивм со ран,
- •1. Введение
- •2. Логически прозрачные нейронные сети
- •2.1. Архитектура логически прозрачных сетей
- •2.2. Критерии логической прозрачности нейронной сети
- •2.3. Требования к нелинейности элементов
- •3. Контрастирование нейронов
- •4. Приведение нейронных сетей к логически прозрачному виду
- •4.1. Наложение ограничений на архитектуру нейросети
- •4.2. Упрощение нейросети
- •4.3. Приведение настраиваемых параметров сети к предельным значениям и модификация нелинейных преобразователей нейронов
- •4.4. Проведение эквивалентных преобразований структуры нейросети
- •5. Вербализация нейронных сетей
- •6. Автоматическая генерация полуэмпирических теорий
- •7. Когнитологические аспекты
- •8. Влияние функции оценки на логическую прозрачность сети. Исключение примеров
- •9. Как выбирают американских президентов
- •10. Заключение
- •Литература
- •Содержание
2.7. Факторы, влияющие на обучение нейронной сети
Рассмотрим факторы, от которых зависит успешность обучения нейронной сети правильному решению задачи. В первую очередь, сеть должна быть достаточно гибкой, чтобы научиться правильно решать все примеры обучающей выборки. Поэтому в нейронной сети должно быть достаточное количество нейронов и связей.
На основании обучающей выборки достаточно сложно определить, сколько слоев и нейронов сети необходимо. Поэтому поступают обычно так. Обучают сеть со структурой, предлагаемой программой-нейроимитатором по умолчанию, а в дальнейшем, если сеть не может обучиться, пробуют обучить сеть большего размера. На практике при решении разнообразных задач практически не встречается ситуации, когда требуется нейросеть с более чем сотней нейронов – обычно хватает нескольких десятков нейронов и даже меньшего числа.
Однако даже увеличение размера нейронной сети не поможет, если обучающая выборка противоречива. Иными словами, в обучающей выборке присутствуют задачи с одинаковыми условиями, но разными ответами (одинаковыми входными векторами данных, но разными выходными). Таким задачам нейронная сеть обучиться не может. Здесь возникает проблема разрешения такой противоречивой ситуации. Появление таких конфликтных примеров может, допустим, означать недостаточность набора входных признаков, поскольку при расширении признакового пространства конфликтным примерам могут соответствовать разные значения добавляемого признака и критическая ситуация будет исчерпана. В любом случае пользователь должен решить эту проблему, хотя бы даже простым исключением конфликтных примеров из задачника.
После обучения нейронной сети необходимо провести ее тестирование на тестовой выборке для определения точности решения не входивших в обучающую выборку задач. Точность решения очень сильно зависит от репрезентативности обучающей выборки. Обычно при решении различных неформализованных задач в разных проблемных областях точность в 70-90% правильных ответов на тестовой выборке соответствует проценту правильных ответов при решении этих же задач специалистом-экспертом.
Может оказаться так, что нейронная сеть обучилась, но дает много ошибок на тестовой выборке. Природу этого явления нужно изучать в каждом конкретном случае. Одна возможная причина – нерепрезентативность обучающей выборки, когда обучающая выборка не охватывает всего множества ситуаций (выборка мала или просто узкоспециализирована). Иной причиной большого количества ошибок, на этот раз, только при решении задачи классификации, может быть неодинаковое число примеров разных классов. При этом при тестировании нейросеть будет достаточно хорошо распознавать примеры класса, для которого в обучающей выборке было большинство примеров, и относить к этому же классу много примеров другого класса. Поэтому желательно, чтобы в обучающей выборке было примерно одинаковое число примеров для каждого класса, или, по крайней мере, не было отличия на порядок и более. Если же неравномерность распределения примеров по классам есть особенность проблемной области, то нужно использовать при обучении сети оценки "с весами" – модификации стандартных оценок, позволяющие уравнивать вклад примеров разных классов в суммарную функцию оценки [9].