
- •1. Принципы преобразования механической энергии в электрическую и обратно.
- •2. Принципы получения переменного и постоянного тока.
- •3. Устройство машины постоянного тока.
- •4. Э. Д. С. И реакция якоря машин постоянного тока.
- •5. Виды возбуждения, их схемы и основные характеристики генераторов постоянного тока.
- •6. Обратимость машин постоянного тока. Пуск, работа, регулирование частоты вращения и реверс электродвигателей постоянного тока.
- •7. Виды возбуждения, их схемы и основные характеристики электродвигателей постоянного тока.
- •8. Потери и к. П. Д. Машин постоянного тока.
- •10. Потери в трансформаторе и их физическая природа.
- •11. Коэффициент трансформации и режимы работы трансформатора. Саморегулирование и к.П.Д. Трансформатора.
- •12. Устройство трехфазного трансформатора.
- •13. Способы соединения обмоток трехфазных трансформаторов.
- •14. Устройство и принцип работы автотрансформатора.
- •15. Трансформаторы тока и напряжения.
- •16. Магнитные усилители.
- •17. Устройство трехфазного асинхронного двигателя с короткозамкнутым ротором.
- •18 . Принцип работы трехфазного асинхронного двигателя с короткозамкнутым ротором.
- •19. Объясните создание вращающегося магнитного поля трехфазной обмоткой машины переменного тока.
- •20. Скольжение асинхронного двигателя. Реверсирование асинхронного двигателя.
- •21. Устройство трехфазного асинхронного двигателя с фазным ротором.
- •22 Пуск трехфазных асинхронных двигателей с фазным и короткозамкнутым ротором.
- •23. Устройство и принцип работы однофазного асинхронного двигателя.
- •24. Устройство трехфазного синхронного генератора.
- •25. Принцип работы трехфазного синхронного генератора.
- •26. Конструкции роторов в трехфазных синхронных генераторах.
- •27. Самовозбуждение трехфазного синхронного генератора.
- •28. Реакция якоря(статора) синхронного генератора.
- •29. Устройство и принцип работы синхронного двигателя.
- •30. Асинхронный пуск и остановка синхронного двигателя. К.П.Д. Синхронного двигателя.
- •31. Назначение и классификация судовых электрических станций.
- •32. Параллельная работа генераторов.
- •33. Способы включения синхронных генераторов на параллельную работу.
- •34. Распределительные устройства судовых электрических станций.
- •35. Главный распределительный щит судовых электрических станций.
- •36. Способы измерения сопротивления изоляции судовых электрических устройств.
- •37. Аварийные электростанции.
- •38. Автоматизированные электростанции.
- •39. Кислотные аккумуляторы.
- •40. Щелочные аккумуляторы.
- •41. Обслуживание аккумуляторов.
- •42.Системы распределения электроэнергии постоянного и переменного тока.
- •43. Распределение электроэнергии на судах по магистральному, фидерному (радиальному) и смешанному принципу.
- •44. Типы судовых электрических сетей (силовые, осветительные и слабого тока).
- •45. Типы и марки электрических кабелей, используемых на судах.
- •46. Расчет и выбор электрических кабелей по току нагрузки.
33. Способы включения синхронных генераторов на параллельную работу.
Включение генераторов переменного тока на параллельную работу можно производить тремя способами:
1. точной синхронизацией,
2.грубой синхронизацией
3. самосинхронизацией
Точная синхронизация преследует цель получения идеального случая включения генераторов на параллельную работу. Этот метод считается основным, так как он предусматривает плавный ввод генераторов в работу.
На
рис
102
представлена
принципиальная
однолинейная
схема
точной
синхронизации
генераторов
трехфазного
тока.
Включение
генераторов производится в следующей последовательности (предположим, что генератор Г/ работает, Г2—подключается)
1. С помощью регулятора возбуждения РВ регулируют величину постоянного тока возбуждения (пунктирной линией условно обозначена обмотка возбуждения) и по вольтметрам V уравнивают напряжения генераторов
С помощью переключателя ПСД воздействуют на элекгро-серводвигатель СД, который механически связан с регулятором топливоподачи и изменяет подачу топлива (или пара) первичного двигателя ПД. Тем самым изменяют частоту вращения генератора, а значит, и ею электрическую частоту. Регулирование производят до тех пор, пока показания обоих частотомеров Иг не станут равными.
3.Выключателем В включают одну обмотку синхроноскопа на шины электростанции (на генератор ГУ), а другую переключателем П — на напряжение генератора Г2. Угол сдвига фаз.
1.разность напряжений генераторов — не более 10% ; 2.несовпадение по фазе - не более 8—12 эл. град., 3. расхождение частот — не более 1%.
Процесс включения генераторов способом точной синхронизации в большинстве случаев автоматизирован, и тогда ошибки исключаются
Схема грубой синхронизации генераторов представлена на рис. 104. Само название говорит о том, что данный способ не преследует обеспечения идеальных условий включения генераторов на параллельную работу. Наоборот, в целях упрощения процесса включения генераторов преднамеренно идут на определенный бросок тока, величина которого ограничивается индуктивным со- противлением.
Следовательно, при грубой синхронизации, в отличие от точной, включение генераторов на параллельную работу обычно производится при наличии угла сдвига фаз между напряжениями генераторов.
Способ включения генераторов па параллельную работу грубой синхронизацией более прост, так как исключается процесс точной подгонки частоты вращения и выбора момента совпадения фаз напряжений генераторов На современных судах применяют оба способа. В спокойной обстановке пользуются точной синхронизацией, так как она не вызывает бросков тока и механических деформации Автоматизируется обычно точная синхронизация, грубая— автоматизируется реже
Схема самосинхронизации генераторов .
При этом провал напряжения практически достигает 30~-40% номинального, полное время восстановления напряжения равно нескольким секундам По этой причине способ самосинхронизации можно применять только на тех судах, где подобные колебания напряжения в течение нескольких секунд не оказывают вредного воздействия на работу потребителей электроэнергии, установленных на судне. Весьма заманчиво то, что способ включения генераторов на параллельную работу самосинхронизацией очень легко автоматизируется, но из-за возникновения больших уравнительных токов и колебаний напряжения его применяют редко.
После включения генераторов на параллельную работу одним из трех рассмотренных способов возникает необходимость равномерного распределения нагрузки между генераторами.
На ГРЩ, судовой электростанции среди прочих электроизмерительных приборов установлены амперметры и киловаттметры, по показаниям которых можно судить о величине нагрузки на данный генератор Однако качественно нагрузка генераторов переменного тока разделяется на активную и реактивную.
Активная нагрузка потребителями электроэнергии преобразуется в механическую, тепловую, световую.
, при перераспределении активной нагрузки генераторов объектом регулирования является не сам генератор, а его приводной двигатель.
Амперметры генераторов показывают величину полного тока и дают представление об активной и реактивной нагрузках. Если показания ваттметров свидетельствуют о равномерном распределении активной нагрузки, а показания амперметров не одинаковы, значит, не одинаково распределена реактивная нагрузка. В этом случае достаточно соответствующим образом изменить э. д с генераторов. Регулятором возбуждения можно, например, уменьшить ток возбуждения, а следовательно, и э. д. с генератора, что приведет к сбросу части реактивной нагрузки с него. Равномерное распределение реактивной нагрузки между параллельно работающими генераторами обычно осуществляется автоматически, без участия обслуживающего персонала. При распределении реактивной нагрузки между генераторами объектом регулирования является сам генератор, регулируемой величиной его э. д. с