- •Физическая химия
- •Предмет физической химии. Возникновение и развитие
- •Химическая термодинамика Основные понятия и определения
- •Классификация термодинамических систем:
- •Идеальные газы. Уравнения состояния газов
- •Внутренняя энергия, теплота, работа
- •Первый закон термодинамики
- •Первый закон термодинамики в изобарных, изохорных, изотермических и адиабатических условиях для идеальных газовых систем.
- •Закон Гесса. Следствия из закона Гесса
- •Стандартные тепловые эффекты
- •Первое следствие из закона Гесса
- •Второе следствие из закона Гесса
- •Уравнение Кирхгофа. Зависимость теплового эффекта реакции от температуры
- •Второй закон термодинамики Понятие об энтропии. Статистическая термодинамика и физический смысл энтропии.
- •Классическое введение энтропии как термодинамической функции
- •Изменение энтропии как критерий самопроизвольного протекания процесса в изолированной системе.
- •Абсолютное значение энтропии. Постулат Планка. (Третий закон термодинамики).
- •Фундаментальное уравнение Гиббса. Термодинамические потенциалы
- •Изменение энергии Гиббса в химических реакциях
- •Химический потенциал.
- •Понятие о фазовых равновесиях
- •Правило фаз Гиббса
- •Однокомпонентные системы
- •Фазовая диаграмма воды
- •Фазовая диаграмма серы
- •Уравнение Клаузиуса – Клапейрона
- •Энтропия испарения
- •Химическое равновесие
- •Закон действия масс. Константы равновесия
- •Изотерма химической реакции (Уравнение Вант-Гоффа).
- •Зависимость константы равновесия от температуры. Изобара и изохора химической реакции
- •Термодинамика растворов
- •Образование растворов. Растворимость
- •Растворимость газов в газах
- •Растворимость газов в жидкостях
- •Взаимная растворимость жидкостей
- •Растворимость твердых веществ в жидкостях
- •Связь между составом жидкого раствора и пара. Законы Коновалова
- •Растворы неэлектролитов Давление насыщенного пара разбавленных растворов. Закон Рауля.
- •Давление пара идеальных и реальных растворов. Отклонения от закона Рауля
- •Температура кристаллизации разбавленных растворов
- •Температура кипения разбавленных растворов
- •Осмотическое давление в разбавленных растворах
- •Понятие активности растворенного вещества
- •Коллигативные свойства растворов
- •Растворы электролитов Теория электролитической диссоциации. Степень диссоциации
- •Слабые электролиты. Константа диссоциации
- •Сильные электролиты
- •Электропроводность растворов электролитов
- •Электрохимические процессы Электрические потенциалы на фазовых границах
- •Гальванический элемент. Эдс гальванического элемента
- •Электродный потенциал. Уравнение Нернста
- •Классификация электродов
- •Электроды первого рода
- •Электроды второго рода
- •Электроды сравнения
- •Индикаторные электроды
- •Окислительно-восстановительные электроды
- •Кинетика химических реакций
- •Скорость химической реакции
- •Основной постулат химической кинетики (закон действия масс в химической кинетике)
- •Реакции нулевого порядка
- •Реакции первого порядка
- •Реакции второго порядка
- •Реакции третьего порядка
- •Уравнения односторонних реакций 0-го, 1-го и 2-ого порядка
- •Реакции нулевого порядка
- •Реакции первого порядка
- •Реакции второго порядка
- •Молекулярность элементарных реакций
- •Методы определения порядка реакции
- •Сложные реакции и их классификация
- •Последовательные реакции
- •Параллельные реакции
- •Сопряженные реакции
- •Цепные реакции
- •Зависимость скорости реакции от температуры. Уравнения Вант-Гоффа и Аррениуса.
- •Фотохимические реакции
- •1. Возбуждение частиц (переход молекул вещества в возбужденное состояние):
- •2. Ионизация частиц за счет отрыва электронов:
- •3. Диссоциация молекул с образованием свободных радикалов (гомолитическая) либо ионов (гетеролитическая):
- •Катализ
- •Ферментативные реакции. Уравнение Михаэлиса
- •Коллоидные системы Основные понятия
- •Получение дисперсных систем
- •Молекулярно кинетические свойства дисперсных систем
- •Оптические свойства коллоидных систем
- •Молекулярные взаимодействия и особые свойства поверхности раздела фаз. Поверхностное натяжение
- •Адсорбция. Уравнение Гиббса
- •Адсорбция на границе твердое тело – газ
- •Адсорбция из растворов. Поверхностно-активные вещества (пав)
- •Мицеллообразование
- •Двойной электрический слой и электрокинетические явления
Растворы неэлектролитов Давление насыщенного пара разбавленных растворов. Закон Рауля.
Представим, что в равновесную систему жидкость А – пар А введено некоторое вещество В. При образовании раствора мольная доля растворителя XА становится меньше единицы; равновесие в соответствии с принципом Ле Шателье смещается в сторону конденсации вещества А, т.е. в сторону уменьшения давления насыщенного пара. Очевидно, что, чем меньше мольная доля компонента А в растворе, тем меньше парциальное давление его насыщенных паров над раствором. Для растворов выполняется следующая закономерность, называемая законом Рауля: Парциальное давление насыщенного пара компонента раствора (рА) прямо пропорционально его мольной доле в растворе (ХА), причем, коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом () .
(53)
Поскольку сумма мольных долей всех компонентов раствора А и В равна единице
(ХА + ХВ = 1),
то для бинарного раствора, состоящего из компонентов А и В, легко получить следующее соотношение, также являющееся формулировкой закона Рауля:
(54)
Относительное понижение давления пара растворителя над раствором равно мольной доле растворенного вещества и не зависит от природы растворенного вещества.
Растворы, для которых выполняется закон Рауля, называют идеальными. Идеальными при любых концентрациях являются растворы, компоненты которых близки по физическим и химическим свойствам (оптические изомеры, гомологи и т.п.) и образование которых не сопровождается объёмными и тепловыми эффектами. В этом случае силы взаимодействия между однородными и разнородными частицами примерно одинаковы, и образование раствора обусловлено лишь энтропийным фактором. Растворы, компоненты которых существенно различаются по физическим и химическим свойствам, подчиняются закону Рауля лишь в области бесконечно малых концентраций.
Давление пара идеальных и реальных растворов. Отклонения от закона Рауля
Если оба компонента бинарного (состоящего из двух компонентов) раствора летучи, то пар над раствором будет содержать оба компонента. Рассмотрим бинарный раствор, состоящий из компонентов А и В, неограниченно растворимых друг в друге. Общее давление пара, согласно закону Рауля, равно
Рис. 15. Зависимость парциальных и общего давлений пара идеального раствора от концентрации раствора. Т=const.
Таким образом, для идеальных бинарных растворов зависимость общего (Робщ) и парциального (рА и рВ) давления насыщенного пара от состава раствора, выраженного в мольных долях компонента В (ХВ), является линейной при любых концентрациях (Рис.15). К таким системам относятся, например, системы бензол – толуол, гексан – гептан, смеси изомерных углеводородов и др.
Для реальных растворов данные зависимости являются криволинейными (Рис.16). Если молекулы данного компонента взаимодействуют друг с другом сильнее, чем с молекулами другого компонента, то истинные парциальные давления паров над смесью будут больше, чем вычисленные по первому закону Рауля (положительные отклонения). Если же однородные частицы взаимодействуют друг с другом слабее, чем разнородные, парциальные давления паров компонентов будут меньше вычисленных (отрицательные отклонения). Реальные растворы с положительными отклонениями давления пара образуются из чистых компонентов с поглощением теплоты (ΔНраств > 0), растворы с отрицательными отклонениями образуются с выделением теплоты (ΔНраств < 0).
Робщ
РА
Рис.16. Зависимость парциальных и общего давлений пара идеальных (штриховая линия) и реальных (сплошная линия) бинарных растворов от состава при положительных (слева) и отрицательных (справа) отклонениях от закона Рауля