
- •Programming Ruby The Pragmatic Programmer's Guide
- •Foreword
- •Preface
- •Ruby Sparkles
- •What Kind of Language Is Ruby?
- •Is Ruby for Me?
- •Why Did We Write This Book?
- •Ruby Versions
- •Installing Ruby
- •Building Ruby
- •Running Ruby
- •Interactive Ruby
- •Ruby Programs
- •Resources
- •Acknowledgments
- •Notation Conventions
- •Roadmap
- •Ruby.New
- •Ruby Is an Object-Oriented Language
- •Some Basic Ruby
- •Arrays and Hashes
- •Control Structures
- •Regular Expressions
- •Blocks and Iterators
- •Reading and 'Riting
- •Onward and Upward
- •Classes, Objects, and Variables
- •Inheritance and Messages
- •Inheritance and Mixins
- •Objects and Attributes
- •Writable Attributes
- •Virtual Attributes
- •Class Variables and Class Methods
- •Class Variables
- •Class Methods
- •Singletons and Other Constructors
- •Access Control
- •Specifying Access Control
- •Variables
- •Containers, Blocks, and Iterators
- •Containers
- •Implementing a SongList Container
- •Blocks and Iterators
- •Implementing Iterators
- •Blocks for Transactions
- •Blocks Can Be Closures
- •Standard Types
- •Numbers
- •Strings
- •Working with Strings
- •Ranges as Sequences
- •Ranges as Conditions
- •Ranges as Intervals
- •Regular Expressions
- •Patterns
- •Anchors
- •Character Classes
- •Repetition
- •Alternation
- •Grouping
- •Pattern-Based Substitution
- •Backslash Sequences in the Substitution
- •Object-Oriented Regular Expressions
- •More About Methods
- •Defining a Method
- •Variable-Length Argument Lists
- •Methods and Blocks
- •Calling a Method
- •Expanding Arrays in Method Calls
- •Making Blocks More Dynamic
- •Collecting Hash Arguments
- •Expressions
- •Operator Expressions
- •Miscellaneous Expressions
- •Command Expansion
- •Backquotes Are Soft
- •Assignment
- •Parallel Assignment
- •Nested Assignments
- •Other Forms of Assignment
- •Conditional Execution
- •Boolean Expressions
- •Defined?, And, Or, and Not
- •If and Unless Expressions
- •If and Unless Modifiers
- •Case Expressions
- •Iterators
- •Break, Redo, and Next
- •Variable Scope and Loops
- •Exceptions, Catch, and Throw
- •The Exception Class
- •Handling Exceptions
- •Tidying Up
- •Play It Again
- •Raising Exceptions
- •Adding Information to Exceptions
- •Catch and Throw
- •Modules
- •Namespaces
- •Instance Variables in Mixins
- •Iterators and the Enumerable Module
- •Including Other Files
- •Basic Input and Output
- •What Is an io Object?
- •Opening and Closing Files
- •Reading and Writing Files
- •Iterators for Reading
- •Writing to Files
- •Talking to Networks
- •Threads and Processes
- •Multithreading
- •Creating Ruby Threads
- •Manipulating Threads
- •Thread Variables
- •Threads and Exceptions
- •Controlling the Thread Scheduler
- •Mutual Exclusion
- •The Mutex Class
- •Condition Variables
- •Running Multiple Processes
- •Spawning New Processes
- •Independent Children
- •Blocks and Subprocesses
- •When Trouble Strikes
- •Ruby Debugger
- •Interactive Ruby
- •Editor Support
- •But It Doesn't Work!
- •But It's Too Slow!
- •Create Locals Outside Blocks
- •Use the Profiler
- •Ruby and Its World
- •Command-Line Arguments
- •Command-Line Options
- •Program Termination
- •Environment Variables
- •Writing to Environment Variables
- •Where Ruby Finds Its Modules
- •Build Environment
- •Ruby and the Web
- •Writing cgi Scripts
- •Using cgi.Rb
- •Quoting
- •Creating Forms and html
- •Cookies
- •Sessions
- •Embedding Ruby in html
- •Using eruby
- •Installing eruby in Apache
- •Improving Performance
- •Ruby Tk
- •Simple Tk Application
- •Widgets
- •Setting Widget Options
- •Getting Widget Data
- •Setting/Getting Options Dynamically
- •Sample Application
- •Binding Events
- •Scrolling
- •Just One More Thing
- •Translating from Perl/Tk Documentation
- •Object Creation
- •Running Ruby Under Windows
- •Windows Automation
- •Getting and Setting Properties
- •Named Arguments
- •For each
- •An Example
- •Optimizing
- •Extending Ruby
- •Ruby Objects in c
- •Value as a Pointer
- •Value as an Immediate Object
- •Writing Ruby in c
- •Evaluating Ruby Expressions in c
- •Sharing Data Between Ruby and c
- •Directly Sharing Variables
- •Wrapping c Structures
- •An Example
- •Memory Allocation
- •Creating an Extension
- •Creating a Makefile with extconf.Rb
- •Static Linking
- •Embedding a Ruby Interpreter
- •Bridging Ruby to Other Languages
- •Ruby c Language api
- •The Ruby Language
- •Source Layout
- •Begin and end Blocks
- •General Delimited Input
- •The Basic Types
- •Integer and Floating Point Numbers
- •Strings
- •Requirements for a Hash Key
- •Symbols
- •Regular Expressions
- •Regular Expression Options
- •Regular Expression Patterns
- •Substitutions
- •Extensions
- •Variable/Method Ambiguity
- •Variables and Constants
- •Scope of Constants and Variables
- •Predefined Variables
- •Exception Information
- •Pattern Matching Variables
- •Input/Output Variables
- •Execution Environment Variables
- •Standard Objects
- •Global Constants
- •Expressions Single Terms
- •Operator Expressions
- •More on Assignment
- •Parallel Assignment
- •Block Expressions
- •Boolean Expressions
- •Truth Values
- •And, Or, Not, and Defined?
- •Comparison Operators
- •Ranges in Boolean Expressions
- •Regular Expressions in Boolean Expressions
- •While and Until Modifiers
- •Break, Redo, Next, and Retry
- •Method Definition
- •Method Arguments
- •Invoking a Method
- •Class Definition
- •Creating Objects from Classes
- •Class Attribute Declarations
- •Module Definitions
- •Mixins---Including Modules
- •Module Functions
- •Access Control
- •Blocks, Closures, and Proc Objects
- •Proc Objects
- •Exceptions
- •Raising Exceptions
- •Handling Exceptions
- •Retrying a Block
- •Catch and Throw
- •Classes and Objects
- •How Classes and Objects Interact
- •Your Basic, Everyday Object
- •Object-Specific Classes
- •Mixin Modules
- •Extending Objects
- •Class and Module Definitions
- •Class Names Are Constants
- •Inheritance and Visibility
- •Freezing Objects
- •Locking Ruby in the Safe
- •Safe Levels
- •Tainted Objects
- •Reflection, ObjectSpace, and Distributed Ruby
- •Looking at Objects
- •Looking Inside Objects
- •Looking at Classes
- •Looking Inside Classes
- •Calling Methods Dynamically
- •Performance Considerations
- •System Hooks
- •Runtime Callbacks
- •Tracing Your Program's Execution
- •How Did We Get Here?
- •Marshaling and Distributed Ruby
- •Custom Serialization Strategy
- •Distributed Ruby
- •Compile Time? Runtime? Anytime!
- •Standard Library
Instance Variables in Mixins
People coming to Ruby from C++ often ask us, ``What happens to instance variables in a mixin? In C++, I have to jump through some hoops to control how variables are shared in a multiple-inheritance hierarchy. How does Ruby handle this?''
Well, for starters, it's not really a fair question, we tell them. Remember how instance variables work in Ruby: the first mention of an ``@''-prefixed variable creates the instance variable in the current object,self.
For a mixin, this means that the module that you mix into your client class (the mixee?) may create instance variables in the client object and may use attrand friends to define accessors for these instance variables. For instance:
module Notes attr :concertA def tuning(amt) @concertA = 440.0 + amt end end
class Trumpet include Notes def initialize(tune) tuning(tune) puts "Instance method returns #{concertA}" puts "Instance variable is #{@concertA}" end end
# The piano is a little flat, so we'll match it Trumpet.new(-5.3) |
produces:
Instance method returns 434.7 Instance variable is 434.7 |
Not only do we have access to the methods defined in the mixin, but we get access to the necessary instance variables as well. There's a risk here, of course, that different mixins may use an instance variable with the same name and create a collision:
module MajorScales def majorNum @numNotes = 7 if @numNotes.nil? @numNotes # Return 7 end end
module PentatonicScales def pentaNum @numNotes = 5 if @numNotes.nil? @numNotes # Return 5? end end
class ScaleDemo include MajorScales include PentatonicScales def initialize puts majorNum # Should be 7 puts pentaNum # Should be 5 end end
ScaleDemo.new |
produces:
7 7 |
The two bits of code that we mix in both use an instance variable named @numNotes. Unfortunately, the result is probably not what the author intended.
For the most part, mixin modules don't try to carry their own instance data around---they use accessors to retrieve data from the client object. But if you need to create a mixin that has to have its own state, ensure that the instance variables have unique names to distinguish them from any other mixins in the system (perhaps by using the module's name as part of the variable name).
Iterators and the Enumerable Module
You've probably noticed that the Ruby collection classes support a large number of operations that do various things with the collection: traverse it, sort it, and so on. You may be thinking, ``Gee, it'd sure be nice if myclass could support all these neat-o features, too!'' (If you actually thought that, it's probably time to stop watching reruns of 1960s television shows.)
Well, your classes cansupport all these neat-o features, thanks to the magic of mixins and moduleEnumerable. All you have to do is write an iterator calledeach, which returns the elements of your collection in turn. Mix inEnumerable, and suddenly your class supports things such asmap,include?, andfind_all?. If the objects in your collection implement meaningful ordering semantics using the<=>method, you'll also getmin,max, andsort.