- •Programming Ruby The Pragmatic Programmer's Guide
- •Foreword
- •Preface
- •Ruby Sparkles
- •What Kind of Language Is Ruby?
- •Is Ruby for Me?
- •Why Did We Write This Book?
- •Ruby Versions
- •Installing Ruby
- •Building Ruby
- •Running Ruby
- •Interactive Ruby
- •Ruby Programs
- •Resources
- •Acknowledgments
- •Notation Conventions
- •Roadmap
- •Ruby.New
- •Ruby Is an Object-Oriented Language
- •Some Basic Ruby
- •Arrays and Hashes
- •Control Structures
- •Regular Expressions
- •Blocks and Iterators
- •Reading and 'Riting
- •Onward and Upward
- •Classes, Objects, and Variables
- •Inheritance and Messages
- •Inheritance and Mixins
- •Objects and Attributes
- •Writable Attributes
- •Virtual Attributes
- •Class Variables and Class Methods
- •Class Variables
- •Class Methods
- •Singletons and Other Constructors
- •Access Control
- •Specifying Access Control
- •Variables
- •Containers, Blocks, and Iterators
- •Containers
- •Implementing a SongList Container
- •Blocks and Iterators
- •Implementing Iterators
- •Blocks for Transactions
- •Blocks Can Be Closures
- •Standard Types
- •Numbers
- •Strings
- •Working with Strings
- •Ranges as Sequences
- •Ranges as Conditions
- •Ranges as Intervals
- •Regular Expressions
- •Patterns
- •Anchors
- •Character Classes
- •Repetition
- •Alternation
- •Grouping
- •Pattern-Based Substitution
- •Backslash Sequences in the Substitution
- •Object-Oriented Regular Expressions
- •More About Methods
- •Defining a Method
- •Variable-Length Argument Lists
- •Methods and Blocks
- •Calling a Method
- •Expanding Arrays in Method Calls
- •Making Blocks More Dynamic
- •Collecting Hash Arguments
- •Expressions
- •Operator Expressions
- •Miscellaneous Expressions
- •Command Expansion
- •Backquotes Are Soft
- •Assignment
- •Parallel Assignment
- •Nested Assignments
- •Other Forms of Assignment
- •Conditional Execution
- •Boolean Expressions
- •Defined?, And, Or, and Not
- •If and Unless Expressions
- •If and Unless Modifiers
- •Case Expressions
- •Iterators
- •Break, Redo, and Next
- •Variable Scope and Loops
- •Exceptions, Catch, and Throw
- •The Exception Class
- •Handling Exceptions
- •Tidying Up
- •Play It Again
- •Raising Exceptions
- •Adding Information to Exceptions
- •Catch and Throw
- •Modules
- •Namespaces
- •Instance Variables in Mixins
- •Iterators and the Enumerable Module
- •Including Other Files
- •Basic Input and Output
- •What Is an io Object?
- •Opening and Closing Files
- •Reading and Writing Files
- •Iterators for Reading
- •Writing to Files
- •Talking to Networks
- •Threads and Processes
- •Multithreading
- •Creating Ruby Threads
- •Manipulating Threads
- •Thread Variables
- •Threads and Exceptions
- •Controlling the Thread Scheduler
- •Mutual Exclusion
- •The Mutex Class
- •Condition Variables
- •Running Multiple Processes
- •Spawning New Processes
- •Independent Children
- •Blocks and Subprocesses
- •When Trouble Strikes
- •Ruby Debugger
- •Interactive Ruby
- •Editor Support
- •But It Doesn't Work!
- •But It's Too Slow!
- •Create Locals Outside Blocks
- •Use the Profiler
- •Ruby and Its World
- •Command-Line Arguments
- •Command-Line Options
- •Program Termination
- •Environment Variables
- •Writing to Environment Variables
- •Where Ruby Finds Its Modules
- •Build Environment
- •Ruby and the Web
- •Writing cgi Scripts
- •Using cgi.Rb
- •Quoting
- •Creating Forms and html
- •Cookies
- •Sessions
- •Embedding Ruby in html
- •Using eruby
- •Installing eruby in Apache
- •Improving Performance
- •Ruby Tk
- •Simple Tk Application
- •Widgets
- •Setting Widget Options
- •Getting Widget Data
- •Setting/Getting Options Dynamically
- •Sample Application
- •Binding Events
- •Scrolling
- •Just One More Thing
- •Translating from Perl/Tk Documentation
- •Object Creation
- •Running Ruby Under Windows
- •Windows Automation
- •Getting and Setting Properties
- •Named Arguments
- •For each
- •An Example
- •Optimizing
- •Extending Ruby
- •Ruby Objects in c
- •Value as a Pointer
- •Value as an Immediate Object
- •Writing Ruby in c
- •Evaluating Ruby Expressions in c
- •Sharing Data Between Ruby and c
- •Directly Sharing Variables
- •Wrapping c Structures
- •An Example
- •Memory Allocation
- •Creating an Extension
- •Creating a Makefile with extconf.Rb
- •Static Linking
- •Embedding a Ruby Interpreter
- •Bridging Ruby to Other Languages
- •Ruby c Language api
- •The Ruby Language
- •Source Layout
- •Begin and end Blocks
- •General Delimited Input
- •The Basic Types
- •Integer and Floating Point Numbers
- •Strings
- •Requirements for a Hash Key
- •Symbols
- •Regular Expressions
- •Regular Expression Options
- •Regular Expression Patterns
- •Substitutions
- •Extensions
- •Variable/Method Ambiguity
- •Variables and Constants
- •Scope of Constants and Variables
- •Predefined Variables
- •Exception Information
- •Pattern Matching Variables
- •Input/Output Variables
- •Execution Environment Variables
- •Standard Objects
- •Global Constants
- •Expressions Single Terms
- •Operator Expressions
- •More on Assignment
- •Parallel Assignment
- •Block Expressions
- •Boolean Expressions
- •Truth Values
- •And, Or, Not, and Defined?
- •Comparison Operators
- •Ranges in Boolean Expressions
- •Regular Expressions in Boolean Expressions
- •While and Until Modifiers
- •Break, Redo, Next, and Retry
- •Method Definition
- •Method Arguments
- •Invoking a Method
- •Class Definition
- •Creating Objects from Classes
- •Class Attribute Declarations
- •Module Definitions
- •Mixins---Including Modules
- •Module Functions
- •Access Control
- •Blocks, Closures, and Proc Objects
- •Proc Objects
- •Exceptions
- •Raising Exceptions
- •Handling Exceptions
- •Retrying a Block
- •Catch and Throw
- •Classes and Objects
- •How Classes and Objects Interact
- •Your Basic, Everyday Object
- •Object-Specific Classes
- •Mixin Modules
- •Extending Objects
- •Class and Module Definitions
- •Class Names Are Constants
- •Inheritance and Visibility
- •Freezing Objects
- •Locking Ruby in the Safe
- •Safe Levels
- •Tainted Objects
- •Reflection, ObjectSpace, and Distributed Ruby
- •Looking at Objects
- •Looking Inside Objects
- •Looking at Classes
- •Looking Inside Classes
- •Calling Methods Dynamically
- •Performance Considerations
- •System Hooks
- •Runtime Callbacks
- •Tracing Your Program's Execution
- •How Did We Get Here?
- •Marshaling and Distributed Ruby
- •Custom Serialization Strategy
- •Distributed Ruby
- •Compile Time? Runtime? Anytime!
- •Standard Library
Iterators
If you read the beginning of the previous section, you might have been discouraged. ``Ruby has pretty primitive built-in looping constructs,'' it said. Don't despair, gentle reader, for there's good news. Ruby doesn't need any sophisticated built-in loops, because all the fun stuff is implemented using Ruby iterators.
For example, Ruby doesn't have a ``for'' loop---at least not the kind you'd find in C, C++, and Java. Instead, Ruby uses methods defined in various built-in classes to provide equivalent, but less error-prone, functionality.
Let's look at some examples.
|
3.times do print "Ho! " end |
produces:
|
Ho! Ho! Ho! |
It's easy to avoid fencepost and off-by-1 errors; this loop will execute three times, period. In addition to times, integers can loop over specific ranges by callingdownto,upto, andstep. For instance, a traditional ``for'' loop that runs from 0 to 9 (something likei=0; i < 10; i++) is written as follows.
|
0.upto(9) do |x| print x, " " end |
produces:
|
0 1 2 3 4 5 6 7 8 9 |
A loop from 0 to 12 by 3 can be written as follows.
|
0.step(12, 3) {|x| print x, " " } |
produces:
|
0 3 6 9 12 |
Similarly, iterating over arrays and other containers is made easy using their eachmethod.
|
[ 1, 1, 2, 3, 5 ].each {|val| print val, " " } |
produces:
|
1 1 2 3 5 |
And once a class supports each, the additional methods in theEnumerablemodule (documented beginning on page 403 and summarized on pages 102--103) become available. For example, theFileclass provides aneachmethod, which returns each line of a file in turn. Using thegrepmethod inEnumerable, we could iterate over only those lines that meet a certain condition.
|
File.open("ordinal").grep /d$/ do |line| print line end |
produces:
|
second third |
Last, and probably least, is the most basic loop of all. Ruby provides a built-in iterator called loop.
|
loop { # block ... } |
The loopiterator calls the associated block forever (or at least until you break out of the loop, but you'll have to read ahead to find out how to do that).
For ... In
Earlier we said that the only built-in Ruby looping primitives were whileanduntil. What's this ``for'' thing, then? Well,foris almost a lump of syntactic sugar. When you write
|
for aSong in songList aSong.play end |
Ruby translates it into something like:
|
songList.each do |aSong| aSong.play end |
The only difference between the forloop and theeachform is the scope of local variables that are defined in the body. This is discussed on page 87.
You can use forto iterate over any object that responds to the methodeach, such as anArrayor aRange.
|
for i in ['fee', 'fi', 'fo', 'fum'] print i, " " end for i in 1..3 print i, " " end for i in File.open("ordinal").find_all { |l| l =~ /d$/} print i.chomp, " " end |
produces:
|
fee fi fo fum 1 2 3 second third |
As long as your class defines a sensible eachmethod, you can use aforloop to traverse it.
|
class Periods def each yield "Classical" yield "Jazz" yield "Rock" end end
periods = Periods.new for genre in periods print genre, " " end |
produces:
|
Classical Jazz Rock |
