- •Programming Ruby The Pragmatic Programmer's Guide
- •Foreword
- •Preface
- •Ruby Sparkles
- •What Kind of Language Is Ruby?
- •Is Ruby for Me?
- •Why Did We Write This Book?
- •Ruby Versions
- •Installing Ruby
- •Building Ruby
- •Running Ruby
- •Interactive Ruby
- •Ruby Programs
- •Resources
- •Acknowledgments
- •Notation Conventions
- •Roadmap
- •Ruby.New
- •Ruby Is an Object-Oriented Language
- •Some Basic Ruby
- •Arrays and Hashes
- •Control Structures
- •Regular Expressions
- •Blocks and Iterators
- •Reading and 'Riting
- •Onward and Upward
- •Classes, Objects, and Variables
- •Inheritance and Messages
- •Inheritance and Mixins
- •Objects and Attributes
- •Writable Attributes
- •Virtual Attributes
- •Class Variables and Class Methods
- •Class Variables
- •Class Methods
- •Singletons and Other Constructors
- •Access Control
- •Specifying Access Control
- •Variables
- •Containers, Blocks, and Iterators
- •Containers
- •Implementing a SongList Container
- •Blocks and Iterators
- •Implementing Iterators
- •Blocks for Transactions
- •Blocks Can Be Closures
- •Standard Types
- •Numbers
- •Strings
- •Working with Strings
- •Ranges as Sequences
- •Ranges as Conditions
- •Ranges as Intervals
- •Regular Expressions
- •Patterns
- •Anchors
- •Character Classes
- •Repetition
- •Alternation
- •Grouping
- •Pattern-Based Substitution
- •Backslash Sequences in the Substitution
- •Object-Oriented Regular Expressions
- •More About Methods
- •Defining a Method
- •Variable-Length Argument Lists
- •Methods and Blocks
- •Calling a Method
- •Expanding Arrays in Method Calls
- •Making Blocks More Dynamic
- •Collecting Hash Arguments
- •Expressions
- •Operator Expressions
- •Miscellaneous Expressions
- •Command Expansion
- •Backquotes Are Soft
- •Assignment
- •Parallel Assignment
- •Nested Assignments
- •Other Forms of Assignment
- •Conditional Execution
- •Boolean Expressions
- •Defined?, And, Or, and Not
- •If and Unless Expressions
- •If and Unless Modifiers
- •Case Expressions
- •Iterators
- •Break, Redo, and Next
- •Variable Scope and Loops
- •Exceptions, Catch, and Throw
- •The Exception Class
- •Handling Exceptions
- •Tidying Up
- •Play It Again
- •Raising Exceptions
- •Adding Information to Exceptions
- •Catch and Throw
- •Modules
- •Namespaces
- •Instance Variables in Mixins
- •Iterators and the Enumerable Module
- •Including Other Files
- •Basic Input and Output
- •What Is an io Object?
- •Opening and Closing Files
- •Reading and Writing Files
- •Iterators for Reading
- •Writing to Files
- •Talking to Networks
- •Threads and Processes
- •Multithreading
- •Creating Ruby Threads
- •Manipulating Threads
- •Thread Variables
- •Threads and Exceptions
- •Controlling the Thread Scheduler
- •Mutual Exclusion
- •The Mutex Class
- •Condition Variables
- •Running Multiple Processes
- •Spawning New Processes
- •Independent Children
- •Blocks and Subprocesses
- •When Trouble Strikes
- •Ruby Debugger
- •Interactive Ruby
- •Editor Support
- •But It Doesn't Work!
- •But It's Too Slow!
- •Create Locals Outside Blocks
- •Use the Profiler
- •Ruby and Its World
- •Command-Line Arguments
- •Command-Line Options
- •Program Termination
- •Environment Variables
- •Writing to Environment Variables
- •Where Ruby Finds Its Modules
- •Build Environment
- •Ruby and the Web
- •Writing cgi Scripts
- •Using cgi.Rb
- •Quoting
- •Creating Forms and html
- •Cookies
- •Sessions
- •Embedding Ruby in html
- •Using eruby
- •Installing eruby in Apache
- •Improving Performance
- •Ruby Tk
- •Simple Tk Application
- •Widgets
- •Setting Widget Options
- •Getting Widget Data
- •Setting/Getting Options Dynamically
- •Sample Application
- •Binding Events
- •Scrolling
- •Just One More Thing
- •Translating from Perl/Tk Documentation
- •Object Creation
- •Running Ruby Under Windows
- •Windows Automation
- •Getting and Setting Properties
- •Named Arguments
- •For each
- •An Example
- •Optimizing
- •Extending Ruby
- •Ruby Objects in c
- •Value as a Pointer
- •Value as an Immediate Object
- •Writing Ruby in c
- •Evaluating Ruby Expressions in c
- •Sharing Data Between Ruby and c
- •Directly Sharing Variables
- •Wrapping c Structures
- •An Example
- •Memory Allocation
- •Creating an Extension
- •Creating a Makefile with extconf.Rb
- •Static Linking
- •Embedding a Ruby Interpreter
- •Bridging Ruby to Other Languages
- •Ruby c Language api
- •The Ruby Language
- •Source Layout
- •Begin and end Blocks
- •General Delimited Input
- •The Basic Types
- •Integer and Floating Point Numbers
- •Strings
- •Requirements for a Hash Key
- •Symbols
- •Regular Expressions
- •Regular Expression Options
- •Regular Expression Patterns
- •Substitutions
- •Extensions
- •Variable/Method Ambiguity
- •Variables and Constants
- •Scope of Constants and Variables
- •Predefined Variables
- •Exception Information
- •Pattern Matching Variables
- •Input/Output Variables
- •Execution Environment Variables
- •Standard Objects
- •Global Constants
- •Expressions Single Terms
- •Operator Expressions
- •More on Assignment
- •Parallel Assignment
- •Block Expressions
- •Boolean Expressions
- •Truth Values
- •And, Or, Not, and Defined?
- •Comparison Operators
- •Ranges in Boolean Expressions
- •Regular Expressions in Boolean Expressions
- •While and Until Modifiers
- •Break, Redo, Next, and Retry
- •Method Definition
- •Method Arguments
- •Invoking a Method
- •Class Definition
- •Creating Objects from Classes
- •Class Attribute Declarations
- •Module Definitions
- •Mixins---Including Modules
- •Module Functions
- •Access Control
- •Blocks, Closures, and Proc Objects
- •Proc Objects
- •Exceptions
- •Raising Exceptions
- •Handling Exceptions
- •Retrying a Block
- •Catch and Throw
- •Classes and Objects
- •How Classes and Objects Interact
- •Your Basic, Everyday Object
- •Object-Specific Classes
- •Mixin Modules
- •Extending Objects
- •Class and Module Definitions
- •Class Names Are Constants
- •Inheritance and Visibility
- •Freezing Objects
- •Locking Ruby in the Safe
- •Safe Levels
- •Tainted Objects
- •Reflection, ObjectSpace, and Distributed Ruby
- •Looking at Objects
- •Looking Inside Objects
- •Looking at Classes
- •Looking Inside Classes
- •Calling Methods Dynamically
- •Performance Considerations
- •System Hooks
- •Runtime Callbacks
- •Tracing Your Program's Execution
- •How Did We Get Here?
- •Marshaling and Distributed Ruby
- •Custom Serialization Strategy
- •Distributed Ruby
- •Compile Time? Runtime? Anytime!
- •Standard Library
Singletons and Other Constructors
Sometimes you want to override the default way in which Ruby creates objects. As an example, let's look at our jukebox. Because we'll have many jukeboxes, spread all over the country, we want to make maintenance as easy as possible. Part of the requirement is to log everything that happens to a jukebox: the songs that are played, the money received, the strange fluids poured into it, and so on. Because we want to reserve the network bandwidth for music, we'll store these logfiles locally. This means we'll need a class that handles logging. However, we want only one logging object per jukebox, and we want that object to be shared among all the other objects that use it.
Enter the Singleton pattern, documented in Design Patterns. We'll arrange things so that the only way to create a logging object is to callLogger.create, and we'll ensure that only one logging object is ever created.
|
class Logger private_class_method :new @@logger = nil def Logger.create @@logger = new unless @@logger @@logger end end |
By making Logger's methodnewprivate, we prevent anyone from creating a logging object using the conventional constructor. Instead, we provide a class method,Logger.create. This uses the class variable@@loggerto keep a reference to a single instance of the logger, returning that instance every time it is called.[The implementation of singletons that we present here is not thread-safe; if multiple threads were running, it would be possible to create multiple logger objects. Rather than add thread safety ourselves, however, we'd probably use the Singleton mixin supplied with Ruby, which is documented on page 468.]We can check this by looking at the object identifiers the method returns.
|
Logger.create.id |
» |
537762894 |
|
Logger.create.id |
» |
537762894 |
Using class methods as pseudo-constructors can also make life easier for users of your class. As a trivial example, let's look at a class Shapethat represents a regular polygon. Instances ofShapeare created by giving the constructor the required number of sides and the total perimeter.
|
class Shape def initialize(numSides, perimeter) # ... end end |
However, a couple of years later, this class is used in a different application, where the programmers are used to creating shapes by name, and by specifying the length of the side, not the perimeter. Simply add some class methods to Shape.
|
class Shape def Shape.triangle(sideLength) Shape.new(3, sideLength*3) end def Shape.square(sideLength) Shape.new(4, sideLength*4) end end |
There are many interesting and powerful uses of class methods, but exploring them won't get our jukebox finished any sooner, so let's move on.
Access Control
When designing a class interface, it's important to consider just how much access to your class you'll be exposing to the outside world. Allow too much access into your class, and you risk increasing the coupling in your application---users of your class will be tempted to rely on details of your class's implementation, rather than on its logical interface. The good news is that the only way to change an object's state in Ruby is by calling one of its methods. Control access to the methods and you've controlled access to the object. A good rule of thumb is never to expose methods that could leave an object in an invalid state. Ruby gives us three levels of protection.
Public methodscan be called by anyone---there is no access control. Methods are public by default (except forinitialize, which is always private).
Protected methodscan be invoked only by objects of the defining class and its subclasses. Access is kept within the family.
Private methodscannot be called with an explicit receiver. Because you cannot specify an object when using them, private methods can be called only in the defining class and by direct descendents within that same object.
The difference between ``protected'' and ``private'' is fairly subtle, and is different in Ruby than in most common OO languages. If a method is protected, it may be called by anyinstance of the defining class or its subclasses. If a method is private, it may be called only within the context of the calling object---it is never possible to access another object's private methods directly, even if the object is of the same class as the caller.
Ruby differs from other OO languages in another important way. Access control is determined dynamically, as the program runs, not statically. You will get an access violation only when the code attempts to execute the restricted method.
