Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Mat_Analiz.docx
Скачиваний:
181
Добавлен:
05.06.2015
Размер:
1.23 Mб
Скачать

Раскрытие неопределенностей вида ,,,,.

Кроме рассмотренных неопределенностей и, встречаются неопределенности вида,,,,, определение которых очевидно. Эти неопределенности сводятся к неопределенностямилиалгебраическими преобразованиями.

    1. Неопределенность ( при ).

Ясно, что или .

    1. Неопределенности вида ,,для выражениясводятся к неопределенности.

Согласно определению этой функции ., то.

    1. Неопределенность (,,при)

Легко видеть, что .

Вопрос 15. Разложение многочлена по степеням (х-а)

Рассмотрим произвольный многочлен степени n:

(1)

Пусть a – любое фиксированное число, тогда, полагая , получим

(2)

Это выражение называют разложение многочлена по степеням. Здесь– числа, зависящие оти, – коэффициенты разложения по степеням.

Подставим в выражение (2) , получим

(3)

Найдем последовательные производные и подставим в ним

Таким образом, многочлен может быть представлен в виде

или

Последняя формула называется формулой Тейлора для многочлена по степеням. Отметим, что правая часть этого выражения фактически не зависит от.

Вопрос 16. Формула Тейлора с остаточным членом в форме Лагранжа.

Если функция f(x) n раз дифференцируема в точке а, то для нее существует многочлен - это многочлен Тейлораn-го порядка функции f(x) в точке a. Обозначим за - на сколько многочлен отличается от самой функции.называют остаточным членом. Нужно доказать, что для «хороших» функцийбудет достаточно мало. Докажем теорему, которую сформулируем в конце. =))

Рассмотрим функцию f; зафиксируем точку a, в которой будем раскладывать функцию, и произвольную точку x, такую что f(x) n-1 раз дифференцируема на [a,x] и n раз дифференцируема на (a,x). В точке а функция дифференцируема n-1 раз, значит для нее можно составить многочлен Тейлора n-1 порядка.

Представим в виде:, где р – произвольное число,H – некоторая функция, зависящая от x.

Рассмотрим функцию :

Рассмотрим F(u) на [a,x]: F(u) непрерывная на [a,x], дифференцируема на (a,x), F(x)=F(a) по теореме Ролля

; продифференцируем:

- и почти все взаимно уничтожается.

, тогда

; Подставим теперьp:=n;

- это остаточный член в форме Лагранжа.

Вопрос 17.

Остаточный член в форме Пеано.

Рассмотрим форму Лагранжа:

Пусть теперь f имеет непрерывную n-ю производную в точке а. Это означает, что на [a,x) функция n раз дифференцируема. Значит f(x) можно представить в виде:

;

, т.к. производная непрерывна. Тогда можно представить в виде:

;

- это формула Тейлора с остаточным членом в форме Пеано.

Вопрос 18.

Ряд Тейлора, его сходимость, признак сходимости.

Вопрос 19.

Экстремум функции. Необходимое условие экстремума непрерывной функции.

Рассмотрим график непрерывной функции y=f(x), изображенной на рисунке. Значение функции в точке x1 будет больше значений функции во всех соседних точках как слева, так и справа от x1. В этом случае говорят, что функция имеет в точке x1 максимум. В точке x3 функция, очевидно, также имеет максимум. Если рассмотреть точку x2, то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x2 минимум. Аналогично для точки x4.

Функция y=f(x) в точке x0 имеет максимум, если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x0, т.е. если существует такая окрестность точки x0, что для всех x≠x0, принадлежащих этой окрестности, имеет место неравенство f(x)<f(x0).

Функция y=f(x) имеет минимум в точке x0, если существует такая окрестность точки x0, что для всех x≠x0, принадлежащих этой окрестности, имеет место неравенство f(x)>f(x0).

Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.

Теорема 1. (Необходимое условие существования экстремума.) 

Если дифференцируемая функция y=f(x) имеет в точке x= x0 экстремум, то ее производная в этой точке обращается в нуль.

Доказательство. Пусть для определенности в точке x0 функция имеет максимум. Тогда при достаточно малых приращениях Δx имеем f(x0+ Δx)<f(x0), т.е. Но тогда

Переходя в этих неравенствах к пределу при Δx→ 0 и учитывая, что производная f '(x0) существует, а следовательно предел, стоящий слева, не зависит от того как Δx → 0, получаем: при Δx → 0 – 0 f'(x0) ≥ 0 а при Δx → 0 + 0 f'(x0) ≤ 0. Так как f '(x0) определяет число, то эти два неравенства совместны только в том случае, когда f '(x0) = 0.

Вопрос 20.

Экстремум функции. Достаточное условие экстремума непрерывной функции.

Рассмотрим график непрерывной функции y=f(x), изображенной на рисунке. Значение функции в точке x1 будет больше значений функции во всех соседних точках как слева, так и справа от x1. В этом случае говорят, что функция имеет в точке x1 максимум. В точке x3 функция, очевидно, также имеет максимум. Если рассмотреть точку x2, то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x2 минимум. Аналогично для точки x4.

Функция y=f(x) в точке x0 имеет максимум, если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x0, т.е. если существует такая окрестность точки x0, что для всех x≠x0, принадлежащих этой окрестности, имеет место неравенство f(x)<f(x0).

Функция y=f(x) имеет минимум в точке x0, если существует такая окрестность точки x0, что для всех x≠x0, принадлежащих этой окрестности, имеет место неравенство f(x)>f(x0.

Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.

Теорема 1: (первое достаточное условие существования экстремума)

Если f(x) дифференцируема в ,f’ имеет разные знаки слева и справа от Xo => Xo – точка экстремума.

Доказательство:

Т.к f(x) с одной стороны возрастает, с другой убывает, т.е.

- max

- min

Теорема доказана.

Теорема 2: (второе достаточное условие существования экстремума)

Если в f()=0,f’’()>0 –min; f’’()<0 –max

Доказательство:

f’()=0, существуетf’’()=>f’ определена в U()

f’(x) в точке возрастает(f’’()>0)

f’(x) в точке убывает(f’’()<0)

1) f’’()>0f’(x) возрастает, f’()=0 =>

при x<

при x<=>– точка минимума

2) Аналогично для f’’()<0…

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]