Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие (Маневский-Ниткин)-2013 оконч..doc
Скачиваний:
222
Добавлен:
05.06.2015
Размер:
3.42 Mб
Скачать

4.3. Литейные сплавы.

Это материалы, обладающие хорошими литейными свойствами и используемые в литейном производстве для получения фасонных заготовок (отливок), которые затем обрабатывают резанием для получения деталей требуемых размеров и точности.

Литейным производством называют процессы получения изделий путем заполнения расплавленным материалом литейной формы, имеющей конфигурацию отливаемого изделия. Основными этапами этого производства являются: изготовление моделей, изготовление и сборка литейных форм и стержней, расплавление материала и заливка форм, выбивка и очистка заготовок. Характерной особенностью литейного производства является универсальность – возможность получения разнообразных по массе (от нескольких грамм до десятков тонн) и конфигурации фасонных заготовок из металлических сплавов и неметаллических материалов (пластмассы, стекло и др.). Подавляющее большинство отливок (примерно 75%) производят из чугуна, около 20% - из стали.

При производстве чугунных отливок применяют доэвтектические чугуны, содержащие от 2,4 до 3,8%С. При меньшем, чем 2,4% содержании углерода, ухудшаются литейные свойства чугунов, а при большем, чем 3,8%, резко снижаются их механические свойства. Востребованность чугунов объясняется их хорошими технологическими, механическими и служебными свойствами. Но по конструкционной прочности чугуны в целом уступают сталям, и поэтому из них изготавливают в основном умеренно нагружаемые при эксплуатации детали. Примеры использования чугунов для деталей машин, их структура и свойства рассмотрены в разделах 1.9 и 1.11.

Для получения стальных фасонных отливок применяют литейные стали с содержанием углерода от 0,09 до 0,55%. В зависимости от состава различают углеродистые и легированные литейные стали. Их маркируют по химическому составу с добавлением в конце марки буквы Л (литейная; например, 35Л, 25ХГСЛ). Стальные отливки получают путем заливки жидкой стали в металлические формы (кокили), а также в формы, изготовленные из формовочных смесей.

Пониженные литейные свойства сталей могут привести к образованию усадочных раковин и пористости, короблению отливок, образованию трещин. В связи с этим усложняется конструкция отливок, что выражается в устройстве больших прибылей (до 60% от общего объема отливки), наличия плавных переходов от толстых сечений к тонким, ребер жесткости и т.д.

Вместе с тем литейные стали находят достаточно широкое применение из-за более высокой, по сравнению с чугунами, выносливости, ударной вязкости и сопротивления хрупкому разрушению. Примеры использования литейных сталей приведены в таблице 5.

Таблица 5.

Примеры использования литейных сталей

Сталь

Термическая обработка

Механические свойства

Применение

,

МПа

δ,

%

KCU,

МДж/м2

15Л;20Л;25

Нормализация, отпуск

650°С

400…450

24…19

0,5…0,4

Ступицы колес, тормозные диски, шкивы, крышки

40Л;50Л;55Л

То же

530…600

14…10

0,3…0,25

Зубчатые колеса,

муфты, зубчатые

венцы, катки

20ГЛ

35ГЛ

>>

550

18

12

0,5

0,3

Зубчатые венцы, диски, звездочки,

Шкивы

45ФЛ

40ГСФРЛ

>>

600

680

12

0,3

Опорные катки, ведущие и направляющие колеса

35ХГСЛ

>>

800

10

0,4

Зубчатые колеса, звездочки, оси, валы,

Муфты

08ГДНФЛ

>>

450

18

0,5

Сварные конструкции

12ДХН1МФЛ

>>

1000

10

0,3

Сварные конструкции

110Г13Л

Закалка с

1050°С в воду

800

25

2,6

Гусеничные звенья

110Г13ФТЛ

То же

820

30

2,5

То же

130Г14ХМФАЛ

>>

880

50

2,45

На конструкционную прочность стальных отливок негативное влияние оказывают дефекты макро- и микроструктуры. К дефектам макроструктуры относят зональную ликвацию, поры, газовые пузыри, трещины, внутренние разрывы. В углеродистых сталях ликвируют сера, фосфор и углерод, что ведет к нежелательному обогащению этими элементами центральной части отливок. В легированных сталях ликвируют также и легирующие элементы, что обуславливает формирование дефектов микроструктуры – карбидной неоднородности и дендритной ликвации. Эти микродефекты, а также крупнозернистость крайне негативно влияют на ударную вязкость стали. Для устранения ликвации проводят диффузионный отжиг. Для уменьшения размеров зерен прибегают к модифицированию стали при выплавке.

Алюминиевые литейные сплавы отличаются малой плотностью (не более 3г/см3) и хорошими литейными свойствами: повышенной жидкотекучестью, обеспечивающей получение тонкостенных, сложных по конфигурации отливок, сравнительно небольшой усадкой, пониженной склонностью к растрескиванию. Для них характерны высокая коррозионная стойкость, хорошие электро- и теплопроводность, удовлетворительная обрабатываемость резанием.

Конструкционная прочность сравнительно невелика из-за невысокой несущей способности большинства этих сплавов (до 350МПа, Е=70ГПа) и их недостаточной пластичности (δ=0,5…3%). Повышение этих показателей достигается за счет модифицирования сплавов металлическим натрием , а так же титаном, цирконием, бором или ванадием в количестве 0,05…0,15% от массы расплава. Готовые отливки подвергают термической обработке – закалке и старению, повышение жесткости достигают за счет увеличения сечения силовых деталей в 1,5…1,6 раза и применения рёбер жесткости.

Литейные алюминиевые сплавы в зависимости от основного легирующего компонента подразделяются на пять групп: 1-я группа – сплавы Al-Si; 2-я - Al-Si-Cu; 3-я - Al-Cu; 4-я - Al-Mg; 5-я –Al-прочие компоненты.

Всего в ГОСТ включено 35 марок литейных алюминиевых сплавов. По стандарту алюминиевые сплавы обозначаются буквой А в начале марки, а последующими буквами обозначаются основные элементы сплава: К – кремний, Мг – магний, М – медь, Мц – марганец, Ц – цинк, Кд – кадмий, Н – никель. Цифры после букв указывают среднее содержание элемента в целых процентах. В таблице 6 приведены примеры использования и свойства некоторых марок литейных алюминиевых сплавов. В скобках указана их старая маркировка. Режимы термообработки: Т1 – искусственное старение при t=175°С в течение 8 часов; Т4 – закалка и естественное старение; Т5 – закалка и кратковременное (4 часа) искусственное старение; Т6 – закалка и полное искусственное старение.

Таблица 6.

Примеры использования и свойства некоторых марок литейных алюминиевых сплавов.

Сплав

Режим термообработки

Механические свойства

Применение

,

МПа

δ,%

НВ

АК12(АЛ-2)

-

150

4

50

Картеры рулевых

механизмов и сцепления,

поршни, трубопроводы

АК9(АЛ-4)

Т1

Т6

200

240

1,5

1,3

70

Корпуса водяных насосов,

крышки картеров рулевого механизма, картеры, головки и блоки цилиндров

АК7(АЛ-9)

Т5

Т5

200

230

2,0

1,0

60

70

Головки блоков, поршни

тормозных цилиндров

АК5М(АЛ-5)

Т5

Т6

220

230

1,5

1,0

70

Головки блоков

АК8М(АЛ-32)

Т1

Т6

200

270

1.5

2,0

70

70

Блоки цилиндров,

головки блоков

АМг5К (АЛ-13)

-

150

1,0

55

Декоративные накладки

АМ5(АЛ-19)

Т4

Т5

300

340

8,0

4,0

70

90

Корпусные детали,

арматура, кронштейны

АЦ4Мг(Ал-24)

Т5

270

2,0

70

Поршни ДВС

АЛ-25, АЛ-30*

Т1

270

2,0

70

Поршни ДВС

* - старая маркировка

Количество литых алюминиевых деталей в автомобилях достигает более 50% от общего числа алюминиевых деталей. В число литых деталей входят не только детали ДВС и корпусные детали, но и детали шасси, тормозной системы и подвески, диски колес, подрамники. Это позволяет снизить массу неподрессоренных частей автомобиля, что положительно влияет на разгонную динамику, плавность движения автомобиля и на безопасность его эксплуатации. Для этих деталей следует использовать литейные алюминиевые сплавы повышенной прочности и достаточной вязкости: АК8М3 (ВАЛ-8), АМ45Кд (ВАЛ-10), у которых= 400…500МПа, δ =4…7%.

Суммарный вес деталей из алюминиевых сплавов в среднестатистическом европейском легковом автомобиле в 2009 году составил примерно 140 кг, что в несколько раз больше по сравнению с 1960 г. Применение алюминиевых деталей вместо литых стальных и чугунных позволяет снизить массу автомобиля, что повышает его топливную экономичность, снижает количество вредных выбросов в атмосферу, улучшает управляемость.

Магниевые сплавы отличаются низкой плотностью (ρ не более 1,74 г/см3), высокой теплопроводностью, хорошими вибро- и звукопоглощающими свойствами. Магниевые сплавы хорошо обрабатываются резанием, шлифуются, полируются и свариваются.

Вместе с тем магниевые сплавы огнеопасны (склонны к возгоранию), имеют более низкую коррозионную стойкость по сравнению с алюминиевыми сплавами при примерном равенстве механических свойств. Плавку и разливку магниевых сплавов ведут под защитным слоем углекислого газа или специальных флюсов. Детали из магниевых сплавов для защиты от коррозии оксидируют, а затем покрывают лакокрасочными материалами.

Основными легирующими элементами в этих сплавах являются алюминий (7,5…9%), цинк (до 4…5%), марганец (0,15…2,5%). Механические свойства на уровне литейных алюминиевых сплавов:=250…270МПа,=100…150МПа,δ =5…9%. Наилучшее сочетание литейных и механических свойств имеют сплавы, содержащие от 7,5 до 10% алюминия (сплавы МЛ-5, МЛ-6). Область применения магниевых сплавов – корпусные детали, рулевые колеса (МЛ-5, МЛ-6), детали ДВС (МЛ-10), диски колес (МЛ-12). Диски колес отливают литьем под давлением в вакуумную пресс-форму. Достигается снижение массы этой детали по сравнению с диском из алюминиевого сплава в среднем на 20…25%. При получении литых изделий из магниевых сплавов достигается высокая чистота поверхности и точность размеров, что почти исключает обработку резанием. Для измельчения зерна и повышения механических свойств проводят модифицирование сплавов магнезитом, цирконием или углекислым газом. Дальнейшее увеличение прочности достигают проведением закалки с последующим старением.

Пониженные прочность и жесткость алюминиевых и магниевых сплавов компенсируют увеличением сечения деталей, их рациональным оребрением, применением шпилек или стяжных болтов вместо ввертных крепежных болтов. Подшипники качения в корпусных деталях из этих сплавов устанавливают в промежуточных стальных гильзах.