
- •Часть II «Металлургия и
- •Часть II «Металлургия и
- •Лекция 1. Черная металлургия Доменное производство
- •Общая характеристика железных руд
- •Подготовка руд к плавке
- •Дробление, измельчение и классификация
- •Обогащение
- •Усреднение
- •Лекция 2 Окускование
- •Агломерация
- •Производство окатышей.
- •Промышленные выбросы, образующиеся при подготовке руды, их очистка
- •Получение чугуна
- •Колошниковый газ. Его очистка
- •Доменный шлак, его использование
- •Лекция 3. Производство стали Основные реакции сталеплавильных процессов
- •Удаление газов из стали
- •Шихтовые материалы сталеплавильного производства
- •Лекция 4 Конвертерный способ получения стали
- •Очистка конвертерных газов
- •Очистка конвертерных газов c дожиганием со
- •Очистка конвертерных газов без дожигания со
- •Лекция 5 Мартеновское производство стали
- •Очистка мартеновских газов
- •Очистка сточных вод сталеплавильного производства
- •Утилизация сталеплавильных шлаков
- •Лекция 6. Цветная металлургия
- •Производство меди
- •Подготовка медных руд к плавке
- •Обжиг медного концентрата
- •Получение черновой меди
- •Плавка медных концентратов на штейн
- •Конвертирование медного штейна
- •Лекция 7 Огневое рафинирование черновой меди
- •Электролитическое рафинирование меди
- •Способы регенерации электролита
- •Производство глинозема
- •Производство криолита
- •Лекция 9 Электролитическое получение металлического алюминия
- •Очистка алюминия от примесей
- •Источники пылегазообразования и очистка отходящих газов
- •Переработка и использование бокситовых шламов
- •Лекция 10. Получение цинка
- •Выщелачивание
- •Теоретические основы выщелачивания
- •Схемы и способы выщелачивания
- •Лекция 11 Очистка растворов сульфата цинка от примесей
- •Электроосаждение цинка
- •Плавка катодного цинка
- •Переработка отходящих газов цинкового производства
- •Утилизация и обезвреживание металлургических газов
- •Лекция 12. Литейное производство
- •Литейные материалы и их свойства
- •Основные этапы литейного производства
- •Подготовка шихты и ее плавка
- •Изготовление литейных форм и их сборка
- •Технология изготовления песчано-глинистых смесей
- •Охлаждение и выбивка отливок
- •Лекция 13 Источники пылегазовыделения и очистка газопылевых выбросов
- •Специальные методы литья
- •Лекция 14. Обработка металлов давлением
- •Прокатное производство
- •Сточные воды прокатных цехов и их очистка
- •Методы утилизации окалиномаслосодержащих осадков
- •Лекция 15. Технология гальванических производств
- •Подготовка деталей к нанесению гальванических покрытий
- •Механическая подготовка
- •Обезжиривание
- •Обезжиривание органическими растворителями
- •Химическое обезжиривание
- •Электрохимическое обезжиривание
- •Травление
- •Химическое травление
- •Электрохимическое травление
- •Активирование и промывка деталей
- •Лекция 16. Механизм образования электрохимических покрытий
- •Лекция 17. Цинкование
- •Хромирование
- •Лекция 18. Очистка и обезвреживание сточных вод гальванического производства
- •Обезвреживание циансодержащих сточных вод
- •Обезвреживание хромсодержащих сточных вод
- •Химическое восстановление хрома (VI) с последующим осаждением гидроксида хрома (III)
- •Электрокоагуляционный метод
- •Гальванокоагуляция
- •Обезвреживание нитритсодержащих сточных вод
- •Нейтрализация сточных вод и осаждение тяжелых металлов
- •Доочистка сточных вод гальванического производства
- •Вопросы для самопроверки
- •Рекомендуемая литература
- •Часть II «Металлургия и металлообработка»
Электрокоагуляционный метод
При электрокоагуляции очистка сточных вод, содержащих хром (VI) заключается в электрохимическом восстановлении хрома (VI) в хром (III). В процессе электролиза одновременно происходит накопление ОН-, за счет чего рН поднимается на 3 - 4 единицы, что приводит к образованию гидроксидов металлов. Процесс ведется в электрокоагуляторе с железными электродами. Образующийся при растворении анода гидроксид железа способствует коагуляции и осаждению Сг(ОН)3.
В межэлектродном пространстве электрокоагулятора протекают следующие процессы:
на аноде:
Fe° - 2 е- → Fe2+
на катоде:
2Н2О + 2е- → H2 + 2OH-
в объеме раствора
2Fe2+ + Сг2О72- + 14Н+ → 2Fe3+ + 2Сг3+ + 7Н2О
Fe3+ + ЗОН- → Fe(OH)3↓
Сг3+ + ЗОН- →+ Cr(OH)3↓
Как видим, данный метод в принципе аналогичен реагентной очистке. Отличие заключается лишь в том, что процесс протекает под действием электрического тока. Метод имеет некоторые преимущества перед реагентной очисткой, однако требует большого расхода электроэнергии.
Гальванокоагуляция
Очистку сточных вод от хрома в гальванокоагуляторах осуществляют следующим образом. В барабан загружают железный скрап, активированный уголь и известь (СаО). Барабан приводится во вращение, и в него подают хромсодержащие сточные воды. Под каталитическим воздействием активированного угля происходит интенсивное растворение железа с образованием ионов Fe(II), которые восстанавливают хром (VI) до хрома (III). Известь необходима для нейтрализации сточных вод. Образующаяся пульпа выносится потоком воды из барабана и далее поступает на механическую очистку.
Метод выгодно отличается от электрокоагуляции тем, что практически не требует затрат электроэнергии (только для привода вращения барабана). Большим его преимуществом является высокая степень очистки сточных вод от хрома (VI). Однако и ему присущи все недостатки реагентного метода.
Обезвреживание нитритсодержащих сточных вод
Для обезвреживания нитритсодержащих сточных вод используются следующие методы:
- окисление до нитратов;
- восстановление до свободного азота.
Окисление до нитратов проводят обычно с использованием растворов гипохлорита натрия в слабокислой среде. Этот метод используют наиболее часто. При этом идет следующая реакция:
NaNO2 + NaOCl = NaNO3 + NaCl
Восстановление нитритов проводят обычно моноамидом серной кислоты. При этом идет следующая реакция:
NaNO2 + NH2SO3 = N2 + NaCl + H2SO4 + H2O
Этот процесс является трудноуправляемым, поэтому используется редко. Этим способом обезвреживают только высококонцентрированные растворы.
Нейтрализация сточных вод и осаждение тяжелых металлов
Полученные в результате обезвреживания растворы смешивают с кислыми и щелочными сточными водами, что приводит к взаимной нейтрализации. Однако обычно при этом не происходит установления нужного значения рН. Поэтому к полученной смеси добавляют реагенты. Обычно после взаимной нейтрализации значение рН ниже требуемого, поэтому для донейтрализации чаще используют щелочные реагенты:
- 20-30% раствор гидроксида натрия. Он используется обычно при небольших расходах сточных вод (не более 45 м3/час);
- 5% раствор извести. Известь используется наиболее часто. К достоинствам извести следует отнести уменьшение солесодержания в результате нейтрализации, а к недостаткам – образование большого количества обводненного шлама.
- 5-10% раствор кальцинированной соды. Этот нейтрализующий агент также используется довольно часто.
Если рН выше требуемого, то в качестве нейтрализующего агента используют раствор серной или соляной кислоты.
Одновременно с нейтрализацией может происходить и осаждение тяжелых металлов. Они осаждаются в виде гидроокисей и основных солей:
NiSO4 + 2NaOH = Ni(OH)2↓ + Na4SO4
2FeCl3 + 3Ca(OH)2 = 2Fe(OH)3↓ +3 CaCl2
2CuSO4 + 2NaOH = [Cu(OH)] 2SO4↓+ Na4SO4
Величина рН влияет не только на выпадение металлов в осадок, но и на свойства осадка. Процесс осаждения можно разделить на два этапа:
перевод металлов в труднорастворимое соединение;
седиментация, то есть отделение твердой фазы от жидкой под действием сил тяжести.
Первый этап протекает в реакторах с перемешиванием, а второй – в отстойниках, осветлителях или фильтрах. Для более эффективного отделения твердой фазы используют реагенты – коагулянты или флокулянты. Однако коагулянты и флокулянты являются весьма дорогостоящими реагентами, кроме того, возрастает количество и влажность образующегося осадка.