
- •Д. А. Гусев
- •Избранные научные публикации:
- •Учебные пособия по логике:
- •Аннотация
- •Оглавление
- •Глава 1. Понятие
- •Глава 2. Суждение
- •Глава 3. Умозаключение
- •Глава 4. Основные законы логики
- •Глава 5. Доказательство
- •Введение, или Что такое логика и зачем она нужна?
- •Глава 1. Понятие
- •1.1. Что такое понятие?
- •1.2. Виды понятий
- •1.3. Определенные и неопределенные понятия
- •1.4. Роль неопределенных понятий в мышлении
- •1.5. В каких отношениях могут быть понятия?
- •1.6. Круговые схемы Эйлера
- •1.7. Как ограничивать и обобщать понятия?
- •Родовое видовое
- •Родовое видовое
- •Родовое
- •1.9. Определение понятия
- •1.10. Правила определения
- •1.11. Деление понятия
- •1. 12. Правила деления
- •1.13. Как складываются и умножаются понятия?
- •Вопросы и задания к главе 1
- •Глава 2. Суждение
- •2.1. Что такое суждение?
- •2. 2. Структура суждения
- •2. 3. Виды суждений
- •2. 4. Простые суждения
- •2. 5. Распределенные и нераспределенные термины в простых суждениях
- •2. 6. Как устанавливать распределенность терминов в простых суждениях
- •2. 7. Преобразование простых суждений
- •2. 8. Отношения между суждениями
- •2. 9. Логический квадрат
- •Противоположность
- •Частичное совпадение
- •2. 10. Сложные суждения
- •2. 11. Истинность сложных суждений
- •2. 12. Формализация рассуждений
- •2. 13. Логические формулы и таблицы истинности
- •2. 14. Виды вопросов
- •2. 15. Корректные и некорректные вопросы
- •Вопросы и задания к главе 2
- •Глава 3. Умозаключение
- •3.1. Что такое умозаключение?
- •Все растения – это живые организмы.
- •3.2. Виды умозаключений
- •3.3. Простой, или категорический силлогизм
- •3.4. Правила терминов простого силлогизма
- •3.5. Правила посылок простого силлогизма
- •3.6. Энтимемы и эпихейремы
- •3.7. Полисиллогизмы и сориты
- •3.8. Умозаключения с союзом “или”
- •3.9. Правила умозаключений с союзом “или”
- •3.10. Умозаключения с союзом “если...То”
- •3.11. Правила умозаключений с союзом “если...То”
- •3.12. Дилеммы
- •3.13. Что такое индукция?
- •3.14. Правила индукции
- •3.15. Ошибки индукции
- •3.16. Установление причинных связей
- •3.17. Что такое аналогия?
- •3.18. Правила аналогии
- •Вопросы и задания к главе 3
- •Глава 4. Основные законы логики
- •4.1. Что такое закон тождества?
- •4.2. Нарушения закона тождества
- •4.3. Что запрещает закон противоречия?
- •4.4. Виды противоречий
- •4.5. Закон исключенного третьего
- •4.6. Закон достаточного основания
- •4.7. Чем отличается наука от псевдонауки?
- •4.8. Спор между софистами и Сократом
- •4.9. Софизмы
- •4.10. Парадоксы-антиномии
- •4.11. Парадокс “Протагор и Эватл”
- •4.12. Парадоксы-апории
- •Вопросы и задания к главе 4
- •Всех гостей «среда заела!»
- •Я онемел от удивления, услышав столь простую истину…»
- •Глава 5. Доказательство
- •5.1. Что такое доказательство?
- •5.2. Структура доказательства
- •5.3. Прямые и косвенные доказательства?
- •5.4. Виды и методы подтверждения
- •5.5. Виды и методы опровержения
- •5.6. Всегда ли доказательство необходимо?
- •5.7. Определенность тезиса в доказательстве
- •5.8. Неизменность тезиса в процессе доказательства
- •5.9. Истинность и достаточность аргументов в доказательстве
- •5.10. Ошибки в демонстрации
- •5.11. Условия успешной дискуссии
- •5.12. Корректные и некорректные приемы спора
- •5.13. Разновидности недопустимых приемов спора
- •5.14. Что такое гипотеза?
- •5.15. Как соотносятся теории и факты?
- •5.16. Рабочие и научные гипотезы
- •Вопросы и задания к главе 5
- •Заключение
- •Литература
4.11. Парадокс “Протагор и Эватл”
Менее удивительную формулировку, но не меньшую известность, чем парадоксы «лжеца» и «деревенского парикмахера» имеет парадокс «Протагор и Эватл», появившийся, как и «лжец», еще в Древней Греции. В его основе лежит незатейливая, на первый взгляд, история, которая заключается в том, что у софиста Протагора был ученик Эватл, бравший у него уроки логики и особенно риторики (в данном случае – политического и судебного красноречия). Учитель и ученик договорились таким образом, что Эватл заплатит Протагору гонорар за обучение только в том случае, если выиграет свой первый судебный процесс. Однако по завершении обучения Эватл не стал участвовать ни в одном процессе и денег учителю, разумеется, не платил. Протагор пригрозил ему, что подаст на него в суд и тогда Эватлу в любом случае придется заплатить. «Тебя или присудят к уплате гонорара, или не присудят, - сказал ему Протагор, - если тебя присудят к уплате, ты должен будешь заплатить по приговору суда; если же тебя не присудят к уплате, то ты, как выигравший свой первый судебный процесс, должен будешь заплатить по нашему уговору». На это Эватл ему ответил: «Все правильно: меня или присудят к уплате гонорара, или не присудят; если меня присудят к уплате, то я, как проигравший свой первый судебный процесс, не заплачу по нашему уговору; если же меня не присудят к уплате, то я не заплачу по приговору суда». Таким образом, вопрос о том, должен Эватл заплатить Протагору гонорар или нет, является неразрешимым. Договор учителя и ученика, несмотря на его вполне невинный внешний вид, является внутренне, или логически противоречивым, т.к. он требует выполнения невозможного действия: Эватл должен и заплатить за обучение, и не заплатить одновременно. В силу этого сам договор между Протагором и Эватлом, а также вопрос об их тяжбе представляет собой не что иное, как логический парадокс.
В отличие от парадоксов-антиномий (“лжеца” и “деревенского парикмахера”) парадокс “Протагор и Эватл” имеет менее резкую форму, так как в нем два противоречащих суждения (“Эватл должен заплатить” и “Эватл не должен заплатить”) являются одновременно истинными, но не вытекают друг из друга, как в случае с парадоксами-антиномиями.
Как уже отмечалось, в логике было создано много способов разрешения и преодоления парадоксов. Однако ни один из них не лишен возражений и не является общепризнанным. Рассмотрение этих способов – долгая и утомительная теоретическая процедура, которая остается в данном случае за пределами нашего внимания. Любознательный читатель сможет познакомиться с разнообразными подходами к решению проблемы логических парадоксов по дополнительной литературе. Логические парадоксы представляют собой свидетельство в пользу того, что логика, как, впрочем, и любая другая наука, является не завершенной, а постоянно развивающейся. По всей видимости, парадоксы указывают на какие-то глубокие проблемы логической теории, приоткрывают завесу над чем-то еще не вполне известным и понятным, намечают новые горизонты в развитии логики.