- •Д. А. Гусев
- •Избранные научные публикации:
- •Учебные пособия по логике:
- •Аннотация
- •Оглавление
- •Глава 1. Понятие
- •Глава 2. Суждение
- •Глава 3. Умозаключение
- •Глава 4. Основные законы логики
- •Глава 5. Доказательство
- •Введение, или Что такое логика и зачем она нужна?
- •Глава 1. Понятие
- •1.1. Что такое понятие?
- •1.2. Виды понятий
- •1.3. Определенные и неопределенные понятия
- •1.4. Роль неопределенных понятий в мышлении
- •1.5. В каких отношениях могут быть понятия?
- •1.6. Круговые схемы Эйлера
- •1.7. Как ограничивать и обобщать понятия?
- •Родовое видовое
- •Родовое видовое
- •Родовое
- •1.9. Определение понятия
- •1.10. Правила определения
- •1.11. Деление понятия
- •1. 12. Правила деления
- •1.13. Как складываются и умножаются понятия?
- •Вопросы и задания к главе 1
- •Глава 2. Суждение
- •2.1. Что такое суждение?
- •2. 2. Структура суждения
- •2. 3. Виды суждений
- •2. 4. Простые суждения
- •2. 5. Распределенные и нераспределенные термины в простых суждениях
- •2. 6. Как устанавливать распределенность терминов в простых суждениях
- •2. 7. Преобразование простых суждений
- •2. 8. Отношения между суждениями
- •2. 9. Логический квадрат
- •Противоположность
- •Частичное совпадение
- •2. 10. Сложные суждения
- •2. 11. Истинность сложных суждений
- •2. 12. Формализация рассуждений
- •2. 13. Логические формулы и таблицы истинности
- •2. 14. Виды вопросов
- •2. 15. Корректные и некорректные вопросы
- •Вопросы и задания к главе 2
- •Глава 3. Умозаключение
- •3.1. Что такое умозаключение?
- •Все растения – это живые организмы.
- •3.2. Виды умозаключений
- •3.3. Простой, или категорический силлогизм
- •3.4. Правила терминов простого силлогизма
- •3.5. Правила посылок простого силлогизма
- •3.6. Энтимемы и эпихейремы
- •3.7. Полисиллогизмы и сориты
- •3.8. Умозаключения с союзом “или”
- •3.9. Правила умозаключений с союзом “или”
- •3.10. Умозаключения с союзом “если...То”
- •3.11. Правила умозаключений с союзом “если...То”
- •3.12. Дилеммы
- •3.13. Что такое индукция?
- •3.14. Правила индукции
- •3.15. Ошибки индукции
- •3.16. Установление причинных связей
- •3.17. Что такое аналогия?
- •3.18. Правила аналогии
- •Вопросы и задания к главе 3
- •Глава 4. Основные законы логики
- •4.1. Что такое закон тождества?
- •4.2. Нарушения закона тождества
- •4.3. Что запрещает закон противоречия?
- •4.4. Виды противоречий
- •4.5. Закон исключенного третьего
- •4.6. Закон достаточного основания
- •4.7. Чем отличается наука от псевдонауки?
- •4.8. Спор между софистами и Сократом
- •4.9. Софизмы
- •4.10. Парадоксы-антиномии
- •4.11. Парадокс “Протагор и Эватл”
- •4.12. Парадоксы-апории
- •Вопросы и задания к главе 4
- •Всех гостей «среда заела!»
- •Я онемел от удивления, услышав столь простую истину…»
- •Глава 5. Доказательство
- •5.1. Что такое доказательство?
- •5.2. Структура доказательства
- •5.3. Прямые и косвенные доказательства?
- •5.4. Виды и методы подтверждения
- •5.5. Виды и методы опровержения
- •5.6. Всегда ли доказательство необходимо?
- •5.7. Определенность тезиса в доказательстве
- •5.8. Неизменность тезиса в процессе доказательства
- •5.9. Истинность и достаточность аргументов в доказательстве
- •5.10. Ошибки в демонстрации
- •5.11. Условия успешной дискуссии
- •5.12. Корректные и некорректные приемы спора
- •5.13. Разновидности недопустимых приемов спора
- •5.14. Что такое гипотеза?
- •5.15. Как соотносятся теории и факты?
- •5.16. Рабочие и научные гипотезы
- •Вопросы и задания к главе 5
- •Заключение
- •Литература
3.10. Умозаключения с союзом “если...То”
Если в разделительно-категорическом умозаключении первая посылка - это разделительное, или дизъюнктивное суждение, то в условно-категорическом умозаключении (или силлогизме) первая посылка является условным, или импликативным суждением. Вторая его посылка, как и в разделительно-категорическом силлогизме представляет собой простое, или категорическое суждение. Например:
Если взлетная полоса покрыта льдом, то самолеты не могут взлетать.
Сегодня взлетная полоса покрыта льдом.
Сегодня
самолеты не могут взлетать.
Условно-категорический силлогизм имеет два модуса. В утверждающем модусе, который также называют модусом поненс (лат. modus ponens) первая посылка представляет собой импликацию, состоящую, как мы уже знаем, из двух частей – основания и следствия, вторая посылка является утверждением основания, а в выводе утверждается следствие, например:
Если вещество – металл, то оно электропроводно.
Данное вещество – это металл.
Данное
вещество электропроводно.
Форма утверждающего модуса условно-категорического силлогизма: ((ав)а)в, где (ав) – это первая посылка в виде импликации основания (а) и следствия (в); ((ав)а) – это две посылки силлогизма в виде двухчленной конъюнкции, состоящей из уже упомянутой импликации и утверждения основания; в – это вытекающий из посылок вывод силлогизма в виде утверждения следствия.
В отрицающем модусе, который также называют модусом толленс (лат. modus tollens) первая посылка представляет собой импликацию основания и следствия, вторая посылка является отрицанием следствия, а в выводе отрицается основание. Например:
Если вещество – металл, то оно электропроводно.
Данное вещество неэлектропроводно.
Данное
вещество – не металл.
Форма отрицающего модуса условно-категорического силлогизма: ((ав)в)а, где (ав) – это первая посылка в виде импликации основания (а) и следствия (в); (ав)в) – это две посылки силлогизма в виде двухчленной конъюнкции, состоящей из уже упомянутой импликации и отрицания следствия; а – это вытекающий из посылок вывод силлогизма в виде отрицания основания.
Необходимо обратить внимание на уже известную нам особенность импликативного суждения, которая состоит в том, что основание и следствие нельзя поменять местами. Например, высказывание: Если вещество – металл, то оно электропроводно является верным, т.к. все металлы – это электропроводники (из того, что вещество – металл, с необходимостью вытекает его электропроводность). Однако, высказывание: Если вещество электропроводно, то оно – металл, неверно, т.к. не все электропроводники являются металлами (из того, что вещество электропроводно, не вытекает то, что оно – металл). Эта особенность импликации обуславливает два правила условно-категорического умозаключения, или силлогизма.
3.11. Правила умозаключений с союзом “если...То”
1. Утверждать можно только от основания к следствию, т.е. во второй посылке утверждающего модуса должно утверждаться основание импликации (первой посылки), а в выводе – ее следствие. В противном случае из двух истинных посылок может вытекать ложный вывод. Например, в условно-категорическом силлогизме:
Если слово стоит в начале предложения, то его надо писать с большой буквы.
Слово
«Москва» надо писать с большой буквы.
Слово «Москва» всегда стоит в начале предложения.
во второй посылке утверждалось следствие, а в выводе - основание (((ав)в)а). Это утверждение от следствия к основанию и является причиной ложного вывода при истинных посылках.
2. Отрицать можно только от следствия к основанию, т.е. во второй посылке отрицающего модуса должно отрицаться следствие импликации (первой посылки), а в выводе - ее основание. В противном случае из двух истинных посылок может вытекать ложный вывод. Например, в условно-категорическом силлогизме:
Если слово стоит в начале предложения, то его надо писать с большой буквы.
В данном предложении
слово «Москва» не стоит в начале.
В данном предложении слово «Москва» не надо писать с большой буквы.
во второй посылке отрицается основание, а в выводе - следствие (((ав)а)в). Это отрицание от основания к следствию и является причиной ложного вывода при истинных посылках.
Вспомним, что среди сложных суждений помимо импликации (ав) есть также эквиваленция (ав). Если в импликации всегда выделяется основание и следствие, то в эквиваленции нет ни того, ни другого, т.к. она представляет собой сложное суждение, обе части которого тождественны (эквивалентны) друг другу. Если первой посылкой силлогизма является не импликация, а эквиваленция, то такой силлогизм называется эквивалентно-категорическим (или - эквивалентно-категорическим умозаключением) Например:
Если число четное, то оно делится без остатка на 2.
Число 16 - четное.
Число 16 делится без остатка на 2.
((ав)а)в)
поскольку в первой посылке эквивалентно-категорического силлогизма нельзя выделить ни основания, ни следствия, то рассмотренные выше правила условно-категорического силлогизма к нему неприменимы (в эквивалентно-категорическом силлогизме и утверждать, и отрицать можно как угодно). Если в условно-категорическом силлогизме два модуса правильных и два неправильных (см. выше), то в эквивалентно-категорическом силлогизме все четыре модуса являются правильными:
((ав)а)в
((ав)в)а
((ав)а)в
((ав)в)а
читатель без труда сможет подобрать примеры для каждого из этих четырех модусов эквивалентно-категорического силлогизма.
Итак, если одна из посылок силлогизма является условным, или импликативным суждением, а вторая - категорическим, или простым, то перед нами условно-категорический силлогизм (также часто называемый условно-категорическим умозаключением). Если же обе посылки представляют собой условные суждения, то это чисто условный силлогизм, или чисто условное умозаключение. Например:
Если вещество является металлом, то оно электропроводно.
Если вещество
электропроводно, то его невозможно
использовать в качестве изолятора.
Если вещество является металлом, то его невозможно использовать в качестве изолятора.
((ав)(вс))(ас)
В данном случае не только обе посылки, но и вывод силлогизма являются условными (импликативными) суждениями. Другая разновидность чисто условного силлогизма:
Если треугольник является прямоугольным, то его площадь равна половине произведения его основания на высоту.
Если треугольник
не является прямоугольным, то его площадь
равна половине произведения его основания
на высоту.
Площадь треугольника равна половине произведения его основания на высоту.
((ав)(ав))в
Как видим, в этой разновидности чисто условного силлогизма обе посылки являются импликативными суждениями, но вывод, в отличие от первой рассмотренной разновидности, представляет собой простое суждение.
Итак, умозаключения с союзом “если...то” могут быть условно-категорическими, чисто условными и эквивалентно-категорическими.
