
- •Д. А. Гусев
- •Избранные научные публикации:
- •Учебные пособия по логике:
- •Аннотация
- •Оглавление
- •Глава 1. Понятие
- •Глава 2. Суждение
- •Глава 3. Умозаключение
- •Глава 4. Основные законы логики
- •Глава 5. Доказательство
- •Введение, или Что такое логика и зачем она нужна?
- •Глава 1. Понятие
- •1.1. Что такое понятие?
- •1.2. Виды понятий
- •1.3. Определенные и неопределенные понятия
- •1.4. Роль неопределенных понятий в мышлении
- •1.5. В каких отношениях могут быть понятия?
- •1.6. Круговые схемы Эйлера
- •1.7. Как ограничивать и обобщать понятия?
- •Родовое видовое
- •Родовое видовое
- •Родовое
- •1.9. Определение понятия
- •1.10. Правила определения
- •1.11. Деление понятия
- •1. 12. Правила деления
- •1.13. Как складываются и умножаются понятия?
- •Вопросы и задания к главе 1
- •Глава 2. Суждение
- •2.1. Что такое суждение?
- •2. 2. Структура суждения
- •2. 3. Виды суждений
- •2. 4. Простые суждения
- •2. 5. Распределенные и нераспределенные термины в простых суждениях
- •2. 6. Как устанавливать распределенность терминов в простых суждениях
- •2. 7. Преобразование простых суждений
- •2. 8. Отношения между суждениями
- •2. 9. Логический квадрат
- •Противоположность
- •Частичное совпадение
- •2. 10. Сложные суждения
- •2. 11. Истинность сложных суждений
- •2. 12. Формализация рассуждений
- •2. 13. Логические формулы и таблицы истинности
- •2. 14. Виды вопросов
- •2. 15. Корректные и некорректные вопросы
- •Вопросы и задания к главе 2
- •Глава 3. Умозаключение
- •3.1. Что такое умозаключение?
- •Все растения – это живые организмы.
- •3.2. Виды умозаключений
- •3.3. Простой, или категорический силлогизм
- •3.4. Правила терминов простого силлогизма
- •3.5. Правила посылок простого силлогизма
- •3.6. Энтимемы и эпихейремы
- •3.7. Полисиллогизмы и сориты
- •3.8. Умозаключения с союзом “или”
- •3.9. Правила умозаключений с союзом “или”
- •3.10. Умозаключения с союзом “если...То”
- •3.11. Правила умозаключений с союзом “если...То”
- •3.12. Дилеммы
- •3.13. Что такое индукция?
- •3.14. Правила индукции
- •3.15. Ошибки индукции
- •3.16. Установление причинных связей
- •3.17. Что такое аналогия?
- •3.18. Правила аналогии
- •Вопросы и задания к главе 3
- •Глава 4. Основные законы логики
- •4.1. Что такое закон тождества?
- •4.2. Нарушения закона тождества
- •4.3. Что запрещает закон противоречия?
- •4.4. Виды противоречий
- •4.5. Закон исключенного третьего
- •4.6. Закон достаточного основания
- •4.7. Чем отличается наука от псевдонауки?
- •4.8. Спор между софистами и Сократом
- •4.9. Софизмы
- •4.10. Парадоксы-антиномии
- •4.11. Парадокс “Протагор и Эватл”
- •4.12. Парадоксы-апории
- •Вопросы и задания к главе 4
- •Всех гостей «среда заела!»
- •Я онемел от удивления, услышав столь простую истину…»
- •Глава 5. Доказательство
- •5.1. Что такое доказательство?
- •5.2. Структура доказательства
- •5.3. Прямые и косвенные доказательства?
- •5.4. Виды и методы подтверждения
- •5.5. Виды и методы опровержения
- •5.6. Всегда ли доказательство необходимо?
- •5.7. Определенность тезиса в доказательстве
- •5.8. Неизменность тезиса в процессе доказательства
- •5.9. Истинность и достаточность аргументов в доказательстве
- •5.10. Ошибки в демонстрации
- •5.11. Условия успешной дискуссии
- •5.12. Корректные и некорректные приемы спора
- •5.13. Разновидности недопустимых приемов спора
- •5.14. Что такое гипотеза?
- •5.15. Как соотносятся теории и факты?
- •5.16. Рабочие и научные гипотезы
- •Вопросы и задания к главе 5
- •Заключение
- •Литература
2. 5. Распределенные и нераспределенные термины в простых суждениях
Основные структурные элементы простого суждения - субъект и предикат - называются терминами суждения. В любом суждении каждый термин является распределенным или нераспределенным.
Термин считается распределенным (т.е. развернутым, исчерпанным, взятым в полном объеме), если в суждении речь идет обо всех объектах, входящих в объем этого термина, и обозначается знаком «+», а на круговых схемах Эйлера изображается полным кругом (т.е. кругом, который не содержит в себе другого круга и не пересекается с другим кругом:
+
Термин считается нераспределенным (т.е. неразвернутым, неисчерпанным, взятым не в полном объеме), если в суждении речь идет не обо всех объектах, входящих в объем этого термина, и обозначается знаком «-», а на круговых схемах Эйлера изображается неполным кругом (т.е. кругом, который содержит в себе другой круг или пересекается с другим кругом):
Например, в суждении: Все акулы (S) являются хищниками (Р) речь идет обо всех акулах, значит субъект этого суждения распределен. Однако, в данном суждении речь идет не обо всех хищниках, а только о части хищников (именно – о тех, которые являются акулами), следовательно, предикат указанного суждения нераспределен. Изобразив отношения между субъектом и предикатом (которые находятся в отношении подчинения) рассмотренного суждения круговыми схемами Эйлера, увидим, что распределенному термину (субъекту акулы) соответствует полный круг, а нераспределенному (предикату хищники) – неполный (попадающий в него круг субъекта как бы вырезает из него какую-то часть):
P-
Распределенность терминов в простых суждениях может быть различной в зависимости от вида суждения и характера отношений между его субъектом и предикатом. Рассмотрим все случаи распределенности терминов в простых суждениях.
1. Если в суждении вида А субъект и предикат находятся в отношении равнозначности, то они оба являются распределенными (S+, P+), например: Все квадраты (S) - это равносторонние прямоугольники (P).
S=P
2. Если в суждении вида А субъект и предикат находятся в отношении подчинения (других отношений между субъектом и предикатом в суждениях вида А, кроме равнозначности и подчинения, как мы знаем, быть не может), то субъект распределен, а предикат нераспределен (S+, P-), например: Все розы (S) являются цветами (P).
P
S
3. Если в суждении вида I субъект и предикат находятся в отношении пересечения, то они оба являются нераспределенными (S-, P-), например: Некоторые школьники (S) - это спортсмены (P).
S
P
4. Если в суждениях вида I субъект и предикат находятся в отношении подчинения (других отношений между субъектом и предикатом в суждениях вида I, кроме пересечения и подчинения, быть не может), то субъект нераспределен, а предикат распределен (S- P+), например: Некоторые животные (S) являются хищниками (P).
S
P
5. В суждениях вида Е субъект и предикат находятся только в отношении несовместимости. Поэтому в этих суждениях они всегда оба распределены (S+, P+), например: Все киты (S) не являются рыбами (P).
S P
6. Если в суждениях вида О субъект и предикат находятся в отношении пересечения, то, в отличие от их распределенности в суждениях вида I, субъект нераспределен, а предикат распределен (S-, P+), например: Некоторые школьники (S) не являются спортсменами (P).
S
P
Несмотря на пересекающиеся круги на схеме Эйлера, субъект данного суждения нераспределен, а предикат распределен. Почему так получается? (Выше мы говорили о том, что пересекающиеся на схеме круги обозначают нераспределенные термины). На схеме штриховкой показана та часть субъекта, о которой идет речь в суждении, а речь в нем идет о тех школьниках, которые спортсменами не являются, в силу чего круг, обозначающий на схеме предикат, остался полным (т.е. круг, обозначающий субъект, не отрезает от него какую-то часть, как это происходит в суждении вида I, где субъект и предикат находятся в отношении пересечения).
7. Если в суждении вида О субъект и предикат находятся в отношении подчинения, то субъект нераспределен, а предикат распределен (S-, P+), например: Некоторые животные (S) не являются хищниками (P).
S
P
Итак, cубъект всегда распределен в суждениях вида А и Е и всегда нераспределен в суждениях вида I и О, а предикат всегда распределен в суждениях вида Е и О, но в суждениях вида А и I он может быть как распределенным, так и нераспределенным в зависимости от характера отношений между ним и субъектом в этих суждениях.