Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры ответы на вопросы к экзамену по твимс2.doc
Скачиваний:
109
Добавлен:
03.10.2013
Размер:
1.01 Mб
Скачать

25. Функция распределения двумерной случайной величины.

Определение 8.1. Функцией распределения F(x, y) двумерной случайной величины (X, Y) называется вероятность того, что X < x, a Y < y:

F( х, у ) = p ( X < x, Y < y ).

Рис.1.

Это означает, что точка (X, Y) попадет в область, заштрихованную на рис. 1, если вершина прямого угла располагается в точке (х, у).

Замечание. Определение функции распределения справедливо как для непрерывной, так и для дискретной двумерной случайной величины.

Свойства функции распределения.

0 ≤ F(x, y) ≤ 1 (так как F(x, y) является вероятностью).

F(x, y) есть неубывающая функция по каждому аргументу:

F(x2, y) ≥ F(x1, y), если x2 > x1;

F(x, y2) ≥ F(x, y1), если y2 > y1.

Доказательство. F(x2, y) = p(X < x2, Y < y) = p(X < x1, Y < y) + p(x1 ≤ X < x2, Y < y) ≥

≥ p(X < x1, Y < y) = F(x1, y). Аналогично доказывается и второе утверждение.

Имеют место предельные соотношения:

а) F(-∞, y) = 0; b) F(x, - ∞) = 0; c) F(- ∞, -∞) = 0; d) F( ∞, ∞) = 1.

Доказательство. События а), b) и с) невозможны ( так как невозможно событие Х<- ∞ или Y <- ∞), а событие d) достоверно, откуда следует справедливость приведенных равенств.

При у = ∞ функция распределения двумерной случайной величины становится функцией распределения составляющей Х:

F(x, ∞) = F1(x).

При х = ∞ функция распределения двумерной случайной величины становится функцией распределения составляющей Y :

F( ∞, y) = F2(y).

Доказательство. Так как событие Y < ∞ достоверно, то F(x, ∞) = р(Х < x) = F1(x). Аналогично доказывается второе утверждение.

31. Центральная предельная теорема.

Рассмотрим одну из наиболее общих форм центральной предельной теоремы:

Пусть имеется взвешенная сумма независимых случайных непрерывных величин x1, x2, x3, …., xn с произвольными законами распределения:

, где постоянная, фиксированная числа.

Пусть i-ая случайная величина имеет и(i=1,2,3,…,n-1,n)

Согласно теореме о числовых характеристиках случайных величин, получим:

Центральная предельная теорема утверждает, что при достаточно общих условиях распределения суммарной Yn при стремиться к нормальному распределению

28. Корреляционный момент. Коэффициент корреляции. Свойства ковариации и коэффициента корреляции.

Коэффициентом ковариации называется выражение:

cov(X,Y)=M[(X-MX)(Y-MY)]=M[XY-XMY-YMX+MX•MY]=MXY-2MX•MY+MX•MY=MXY-MX•MY

Если случайные величины XY независимы, то их коэффициент ковариации равен нулю, обратное в общем случае неверно.

Коэффициентом корреляции случайных величин X и Y называется число:

X*=(X-MX)/σx  Y*=(Y-MY)/σy

D(X±Y)= DX±cov(XY)+DY

Следствие:

Если X и Y независимы, то коэффициент ковариации равен 0 и следовательно

D(X±Y)=DX±DY

Свойства коэффициента корреляции

1. -1≤pxy≤1  2. Если |pxy|=1, то с вероятность 1 X и Y связаны линейно.  То есть, если коэффициент корреляции |pxy|=1, то результаты опыта лежат на прямой

В общем случае Y можно представить в виде

y=ax+b+z DZ=σy2(1-pxy)2

Коэффициент корреляции является мерой близости линейной связи между случайными величинами X и Y: чем ближе коэффициент корреляции по модулю к 1, тем более тесно результаты конкретного испытания над X и Y соотносятся с прямой ax+b.

Свойства ковариации Править

Ковариация симметрична:

.

В силу линейности математического ожидания, ковариация может быть записана как

.

Пусть  случайные величины, а  их две произвольные линейные комбинации. Тогда

.

В частности ковариация (в отличие от коэффициента корреляции) не инварианта относительно смены масштаба, что не всегда удобно в приложениях.

Ковариация случайной величины с собой равна дисперсии:

.

Если  независимые случайные величины, то

.

Обратное, вообще говоря, неверно.

Неравенство Коши — Буняковского:

.

31.

Теоремы Маркова и Бернулли.