
- •Вычисление новых переменных в соответствии с определенными условиями
- •Важность спокойствия и порядка
- •Важность влияния граждан на власть
- •Важность борьбы с инфляцией
- •Важность свободного выражения мнений
- •Индекс Инглхарта
- •Индекс Инглхарта
- •Агрегирование данных
- •Group Statistics (Статистика группы)
- •Independent Samples Test (Тест для независимых выборок)
- •Ранговые преобразования
- •Case Processing Summary a (Сводка случаев)
- •2 Типы рангов
- •Case Processinq Summary3 (Сводка наблюдений)
- •Кодирование и кодировочная таблица
- •Матрица данных
- •Имя переменной
- •Тип переменной
- •Формат столбца (Width)
- •Столбцы (Columns)
- •Выравнивание (Alignment)
- •Шкала измерения (Measure)
- •Частотные таблицы
- •Психическое состояние
- •Вывод статистических характеристик
- •Статистика
- •Медиана для концентрированных данных
- •Статистика
- •Форматы частотных таблиц
- •Специальность
- •Перекодирование значений
- •Политический спектр
- •Агрегирование данных
- •Group Statistics (Статистика группы)
- •Independent Samples Test (Тест для независимых выборок)
- •Ранговые преобразования
- •Case Processing Summary a (Сводка случаев)
- •Создание таблиц сопряженности
- •Case Processing Summary (Обработанные наблюдения)
- •Пол * Психическое состояние Crosstabulation (Таблица сопряженности)
- •Пол * Психическое состояние Crosstabulation (Таблица сопряженности)
- •Пол * Психическое состояние Таблица сопряженности
- •Пол * Психическое состояние Таблица сопряженности
- •Форматы таблиц сопряженности
- •Применение переменных групп и слоев
- •Графическое представление таблиц сопряженности
- •Статистические критерии для таблиц сопряженности
- •Пол * Психическое состояние Таблица сопряженности
- •Критерий хи-квадрат по Пирсону
- •Критерий хи-квадрат с поправкой на правдоподобие
- •Тест Мантеля-Хэнзеля
- •Symmetric Measures (Симметричные меры)
- •Занятие * Партийная работа Crosstabulation (Таблица сопряженности)
- •Directional Measures (Направленные меры)
- •Symmetric Measures (Симметричные меры)
- •Коэффициент сопряженности признаков (Пирсона)
- •Критерий Крамера (V)
- •Тау (т) Гудмена-Крускала
- •Коэффициент неопределенности
- •Гамма (ÿ)
- •D Сомера
- •Коэффициент каппа (к)
- •Мера риска
- •Пол * Депрессия Таблица сопряженности
- •Risk Estimate (Оценка риска)
- •Тест хи-квадрат по Мак-Немару
- •Статистика Кохрана и Мантеля-Хзнзеля
- •Пол * Тревожная депрессия Crosstabulation (a)
- •Пол * Тревожная депрессия Crosstabulation (a)
- •Test of Homogenity of the Odds Ratio (Тест на гомогенность отношения шансов) Statistics
- •Mantel-Haenszel Common Odds Ratio Estimate (Оценка общего отношения шансов Мантеля-Гензеля)
- •Коэффициент корреляции Пирсона
- •Correlations (Корреляции)
- •Ранговые коэффициенты корреляции по Спирману и Кендалу
- •Correlations (Корреляции)
- •Частная корреляция
- •Correlations (Корреляции)
Тау (т) Гудмена-Крускала
Это вариант меры связанности , который SPSS всегда вычисляет совместно с ней. При определении этой меры количество правильных предсказаний определяется по-иному: наблюдаемые частоты взвешиваются с учетом своих процентов и складываются. Для первого прогноза это дает:
36 * 56,3% + 28 * 43,8% =32,53
Согласно этому выражению, из 64 респондентов неверное предположение сделано для 31,47, что составляет 49,17%.
С учетом второй переменной количество верных предположений (второй прогноз) составляет:
13 * 59,1 % + 16 * 88,9 % + 7 * 29,2 % + 9 * 40,9 % + 2 * 11,1 % + 17 * 70,8 % = 39,89
Итак, при втором прогнозе сделано 24,11 неверных прогнозов из 64, что составляет 37,67%. Тогда сокращение ошибки равно
(49.17 %-37.67%)/49,17 %=0,235
Это значение выводится под названием "тау Гудмена-Крускала". И в этом случае SPSS выдает второе значение т, рассматривая вторую переменную, как зависимую.
Коэффициент неопределенности
Это еще один вариант критерия лямбда, при определении которого имеется в виду не ошибочное предсказание, а "неопределенность", то есть степень неточности предсказаний. Эта неопределенность вычисляется по достаточно сложным формулам, которые мы опускаем. Коэффициент неопределенности также принимает значения в диапазоне от 0 до 1. Значение 1 говорит о том, что одну переменную можно точно предсказать по значениям другой.
Меры связанности для переменных с порядковой шкалой
Все эти критерии основаны на количестве нарушений порядка (так называемых инверсий, обозначаемых через 1). Количество инверсий можно определить, если расположить в порядке возрастания значения одной из двух переменной между которыми необходимо установить степень взаимосвязи, а рядом с ними записать соответствующие значения другой переменной. Число нарушений порядка расположения второй переменной и есть количество инверсий. Это количество вместе с количеством соблюдений порядка (проверсий, обозначаемых через Р) используется в различных формулах для определения меры связанности, которые дают значения этого параметра в диапазоне от -1 до +1.
Гамма (ÿ)
Гамма вычисляется по простой формуле:
Если инверсий не наблюдается (I = 0), то мы имеем у =1 (полную зависимость). Если же не встречается проверсий, а только инверсии (Р = 0), то говорят о максимально разнонаправленной зависимости (у = -1). Если Р= I, зависимости вообще не существует (y=0).
D Сомера
Существуют две асимметричных и симметричная меры связанности d Сомера. Для их вычисления используется формула для ус корректирующим членом Т, который учитывает количество связей зависимых переменных (одинаковых значений, встречающихся в измерениях):
Для сопряженной асимметричной меры связанности d Сомера используется корректирующий член Г, соответствующий количеству связей независимой переменной. В знаменателе симметричной rf-статистики Сомера стоит среднее значение двух асимметричных коэффициентов.
Тау-б (Tb Кендалла)
Этот коэффициент одновременно учитывает связи как зависимых, так и независимых переменных:
tb может приобретать значения -1 и +1 только для квадратных таблиц сопряженности.
Тау-ц (tc) Кендалла
Этот критерий может достигать значений -1 и +1 в любых таблицах:
Здесь N — общая сумма частот; m — наименьшее из количеств строк и столбцов.
Другие меры связанности
SPSS позволяет вычислить другие специальные меры связанности, обзор которых приводится ниже.
Эта
Этот коэффициент применяется, если зависимая переменная принадлежит к интервальной шкале, а независимая — к порядковой или шкале наименований, эта2 представляет собой долю общей дисперсии, которую можно объяснить влиянием независимой переменной.