
- •1. Управляющие эвм, требования к ним по сравнению с пк
- •2. Сигнальные процессоры и плк
- •3. Упрощенный критерий оценки эвм, блок-схема «машины фон-Неймана», сравнение с Гарвардской архитектурой
- •4. Контроллер памяти, шина процессора
- •X86-система с внешним контроллером памяти (слева) и с контроллером памяти, встроенным в процессор (справа)
- •5. Скорость чтения и записи памяти, латентность памяти
- •6. Архитектура процессора как совместимость с кодом, наборы команд
- •7. О многоядерности как концепции, различия между ядрами одной микроархитектуры, ревизии цп
- •8. Принцип действия кэШа, многоуровневое кэширование, регистры процессора
- •9. Предвыборка данных, принцип повышения скорости передачи информации для памяти ddr2, ddr3
- •10. Сравнение кинематических пар вращательной и поступательной в управляемых механизмах (станки, роботы)
- •11. Ангулярная система координат
- •12. Основные команды управления траекторией движения промышленного робота
- •13. График движения между двумя точками, торможение
- •14. Многокоординатное управление движениями, влияние технологического процесса и размера партии изготавливаемых деталей, пример
- •15. Позиционное и контурное управление движениями
- •16. Числовое программное управление (nc, cnc)
- •17. Исполнительные элементы привода, гидро и пневмоцилиндры
- •18. Классификация электродвигателей, обратимость электромашин
- •19. Электромашина постоянного тока, основные параметры и их зависимости
- •20. Бесколлекторные двигатели постоянного тока
- •21. Механические характеристики электродвигателей (графики зависимости ω от м)
- •22. Асинхронный электродвигатель (принцип работы, достоинства, относительный недостаток, скольжение)
- •23. Синхронный двигатель (сравнение с асинхронным двигателем)
- •24. Датчики сау (основные требования к ним, классификация, датчики приближения)
- •25. Датчики угла поворота вала
- •26. Частотно-регулируемый привод на примере sb-19
- •27. Оптическая развязка сигнальных цепей
- •28. Основные показатели усилителя
- •29. Логарифмическая шкала, децибелы
- •30. Сквозной акустический тракт, частотные свойства слуха человека
- •31. Представление звука как суммы гармонических колебаний
- •32. Акустическое оформление громкоговорителей (колонки)
- •33. Ачх акустического тракта
- •34. Полевые моп-транзисторы
- •35. Логические ячейки nor и nand
- •36. Полевые транзисторы с управляющим p-n переходом
- •37. Физический принцип работы флеш-памяти, основные параметры
- •38. Блок питания с непрерывным регулированием
- •39. Операционный усилитель
- •40. Пример линейной сау температурой
- •41. Система пид
- •42. Анализ устойчивости сау
- •43. Терморегулятор на примере трм251
- •44. Охлаждение эвм
- •45. Энергосбережение в эвм
- •46. Импульсный блок питания эвм
- •47. Силовые импульсные цепи
- •48. Шим и чим
- •49. Источники бесперебойного питания эвм
- •50. Мостовые схемы преобразования переменного тока в постоянный и обратно
- •51. Система scada
- •52. Компьютерные сети в управлении (can, profibus)
50. Мостовые схемы преобразования переменного тока в постоянный и обратно
При
зарядке аккумуляторов нужно преобразовывать
переменный ток в постоянный с помощью
выпрямителя, построенного чаще всего
по схеме моста. Подобный мост используется
также в блоке питания ПК. На рисунке
слева приведена схема выпрямительного
моста на четырех диодах, а в центре
поясняется его работа. Диоды работают
как ключи. При питании ЭВМ от аккумулятора
нужно выполнять обратное преобразование
постоянного тока в переменный. Это
выполняется также с помощью мостовой
схемы, но в ней использованы управляемые
ключи на мощных транзисторах МДП или
IGBT.
Две схемы в центре рисунка поясняют,
как это работает, но здесь нужно
представить, что вход не слева, как
обычно, а справа. Параллельно каждому
транзистору включен предохранительный
диод, защищающий транзистор от обратного
перенапряжения в закрытом состоянии,
здесь на мост из транзисторов наложен
мост из диодов.
51. Система scada
Это
международный стандарт на построение
АСУ, включая САУ. Можно сказать, что в
нем учтены ранее указанные взгляды на
построение системы снизу и сверху. В
этом стандарте накоплен опыт построения
АСУ с учетом перспективы развития
компьютерных сетей, с учетом использования
самого разнообразного оборудования и
модульного принципа построения систем.
Рассмотрим простой пример системы, показанной на рисунке. На артезианской скважине, расположенной за чертой города, установлен насос (pump), который должен обеспечить определенный объем воды в единицу времени - расход (л/мин - flow). Датчик F-1 измеряет текущее значение расхода, а УЭВМ (PLC-1), изменяя частоту вращения электродвигателя насоса, поддерживает заданное значение (setpoint) расхода. Вода от насоса поступает в бак, где другая САУ с PLC- 2 поддерживает определенный уровень воды в баке, измеряемый датчиком L (level), открывая или закрывая вентиль (valve) V-2, подающий воду потребителям. В системе SCADA указанные САУ образуют нижний уровень управления. УЭВМ в виде ПЛК (PLC), цифровых сигнальных процессоров (DSP) или других ЭВМ называются в общем виде RTU (Remote Terminal Unit – удаленное терминальное устройство). Эти устройства связаны с центром управления по компьютерной сети, ЭВМ центра получает и накапливает данные о расходе воды в колодце и об уровне воды в баке. Эта ЭВМ показывает данные управляющему персоналу, который на основании этих и других данных (например, об ожидаемом расходе воды, об ожидаемой погоде и т.д.) принимает решение о заданных значениях (setpoint) расхода и уровня в текущее время и передает их по сети в RTU. Сокращение SCADA расшифровывается как “supervisory control and data acquisition” – «управление и сбор данных». Это название предполагает управление с участием человека (АСУ), поэтому важной частью является HMI (Human-Machine Interface) – интерфейс человек-ЭВМ. Сюда входят различные графические средства отображения информации (видеоподсистема ПК с экранами и программным обеспечением), средства ввода информации. На экранах обычно наглядно показывается схема управляемых объектов, как на рисунке, и текущие значения управляемых параметров. Для облегчения принятия решений персоналом имеется еще база данных, например о предыстории событий, а также различные системы принятия решений.
В системе SCADA специально предусмотрены средства аварийной сигнализации и возможности устранения последствий аварий, например, дублирование (резервирование).
SCADA предполагает охват объектов на значительном пространстве, например в системе водоснабжения городом, как в данном примере. Поэтому одной из важнейших ее функцией является передача данных. В настоящее время здесь используются последние достижения в области компьютерных сетей и стандартные решения на базе Internet (TCP/IP-based SCADA networks) и Ethernet.