
- •Основные понятия тмм. Машина, механизм, звено, кинематическая пара.Классификация кинематических пар.
- •Степень свободы (подвижности) пространственных и плоских механизмов.
- •Кинематические цепи и их классификация.
- •Основные принципы образования механизмов.
- •Группа Ассура, классификация групп Ассура (класс, порядок и вид групп II класса).
- •Структурный анализ механизмов с высшими кинематическими парами.
- •Задачи и методы кинематического анализа механизмов.
- •Кинематический анализ рычажных механизмов методом планов. Аналоги скоростей и ускорений.
- •Кинематический анализ рычажных механизмов методом замкнутого векторного контура.
- •Виды зубчатых механизмов. Передаточное отношение.
- •Кинематика зубчатых механизмов с неподвижными осями колес. Коробки передач автомобилей.
- •Кинематика дифференциальных и планетарных механизмов.
- •Кинематика колесного дифференциала.
- •Кинематика карданной передачи.
- •Динамическая модель машинного агрегата (звено приведения).
- •Приведенный момент сил и приведенный момент инерции.
- •Уравнения движения машинного агрегата в энергетической и дифференциальной формах.
- •Режимы движения машинного агрегата.
- •Определения закона движения звена приведения.
- •Неравномерность вращения звена приведения и способы уменьшения неравномерности.
- •Задачи и методы силового расчёта механизмов.
- •Определение сил инерции.
- •Условие статической определимости кинематических цепей.
- •Силовой расчет рычажных механизмов методом планов и аналитическим методом.
- •Трение в поступательных кинематических парах.
- •Трение во вращательных парах.
- •Трение в винтовой кинематической паре.
- •Трение качения в высших кинематических парах.
- •Кпд при последовательном и параллельном соединении механизмов.
- •Неуравновешенность вращающихся масс и ее виды.
- •Уравновешивание нескольких вращающихся масс, расположенных в одной плоскости.
- •Динамическая балансировка вращающихся масс.
- •Уравновешивание механизмов на фундаменте.
- •Параметры жесткости и диссипации упругих звеньев машин.
- •Дифференциальное уравнение колебательного движения механизма с упругими звеньями.
- •Методы и средства виброзащиты машин.
- •Виды кулачковых механизмов. Фазы движения выходного звена. Законы движения выходного звена.
- •Угол давления в кулачковых механизмах. Влияние его величины на работоспособность механизма.
- •Определение основных размеров кулачковых механизмов.
- •Построение профиля кулачка по заданному закону движения выходного звена.
- •Основная теорема зубчатого зацепления (теорема Виллиса).
- •Эвольвента окружности, ее уравнения и свойства.
- •Основные геометрические параметры зубчатого колеса.
- •Свойства эвольвентного зацепления.
- •Качественные показатели зубчатого зацепления.
- •Методы нарезания зубчатых колес.
- •Явление подрезания зубьев. Минимальное число зубьев нулевого колеса, нарезаемое без подрезания.
- •Определение геометрических параметров зубчатого колеса и передачи.
- •Выбор коэффициента смещения.
- •Синтез планетарных передач (условия соосности, соседства и сборки).
-
Методы нарезания зубчатых колес.
Существует два принципиально различных метода нарезания:
-
метод копирования;
-
метод обкатки.
В первом случае впадина зубчатого колеса фрезеруется на универсальном фрезерном станке фасонными дисковыми или пальцевыми фрезами, профиль которых соответствует профилю впадины. Затем заготовку поворачивают на угол 360º/Z и нарезают следующую впадину. При этом используется делительная головка, а также имеются наборы фрез для нарезания колёс с различным модулем и различным числом зубьев. Метод непроизводителен и применяется в мелкосерийном и единичном производстве.
Второй метод обката или огибания может производиться с помощью инструментальной рейки (гребёнки) на зубострогальном станке; долбяком на зубодолбёжном станке или червячной фрезой на зубофрезерном станке. Этот метод высокопроизводителен и применяется в массовом и крупносерийном производстве.
Самым производительным является зубофрезерование с помощью червячных фрез, которые находятся в зацеплении с заготовкой по аналогии с червячной передачей
При нарезании долбяком осуществляется его возвратно поступательное движение при одновременном вращении. Фактически при этом осуществляется зацепление заготовки с инструментальным зубчатым колесом – долбяком. Этот метод чаще всего используется при нарезании внутренних зубчатых венцов. Все рассмотренные методы используются для нарезания цилиндрических колёс как с прямыми, так и с косыми зубьями.
-
Явление подрезания зубьев. Минимальное число зубьев нулевого колеса, нарезаемое без подрезания.
При
нарезании нулевых колёс с малым числом
зубьев может возникнуть явление врезания
головок зубьев режущего инструмента в
ножки зубьев колеса. Это явление
называется подрезанием
зуба.
При этом уменьшается его прочность и
увеличивается износ рабочей части зуба
(рис. 1).
Согласно
свойствам эвольвентного зацепления
точки контакта зубьев эвольвентного
профиля совпадают с линией NP, начиная с
точки N
(рис. 2), то есть высота прямолинейной
части головки зуба режущего
инструмента (рейки)
должна быть меньше отрезка PF,
иначе часть головки зуба рейки будет
контактировать с заготовкой (нарезать
её) не по эвольвенте.
48а
Так
как
,
а
, то
и
при
стандартных значениях
;
.
Для
исключения подреза при Z<Zmin
необходимо сместить инструмент от
центра заготовки (положительная
коррекция) так, чтобы
, т.
е.
или с учётом того, что
,
получим при
коэффициент коррекции
. Эта
величина χ определяет нижний предел
коэффициента коррекции.
Если увеличивать коэффициент χ, то толщина зуба Sa у вершины (рис. 1) будет уменьшаться и при некотором χmax наступит заострение зуба (Sa=0). Опасность заострения наиболее велика у колёс с малым числом зубьев (Z<15). Для предотвращения разрушения заострённого зуба коэффициент смещения χ назначают с расчётом, чтобы Sa≥0,2m.
48б
-
Определение геометрических параметров зубчатого колеса и передачи.