- •2. Умножение матриц. Согласованные матрицы.
- •4. Теорема о разложении определителя. Теорема Лапласа.
- •5. Обратная матрица. Процедура ее нахождения.
- •6. Ранг матрицы. Способы нахождения.
- •7. Невырожденные системы слау. Способы решения.
- •8. Метод Гаусса. Произвольные слау. Теорема Кронекера-Капелли.
- •9. Однородные слау. Фундаментальная система решений.
- •10. Векторы на плоскости и в пространстве. Операции над векторами.
- •1. Умножение вектора на число:
- •2. Сумма двух векторов:
- •11. Коллинеарность и компланарность. Базис. Координаты.
- •12. Скалярное произведение векторов. Определение. Вычисление. Свойства.
- •14. Смешанное произведение векторов. Определение. Вычисление. Свойства.
- •15. Прямая на плоскости.
- •19. Взаимное расположение прямых.
- •20. Взаимное расположение прямой и плоскости.
- •21. Эллипс.
- •22. Гипербола.
- •23. Парабола.
- •24. Эллипсоид.
- •25. Гиперболоид и конус.
- •26. Параболоид.
- •27. Цилиндрические поверхности.
- •30. Графики в полярной системе координат и параметрически заданных функций.
- •31. Действительные числа.
- •32. Множества и операции над ними.
- •33. Предел последовательности.
- •34. Теоремы о пределах последовательности.
- •35. Предел функции.
- •36. Бесконечно малые и бесконечно большие функции.
- •37. Односторонние пределы.
- •38. Сравнение бесконечно малых.
- •39. Теоремы о пределах.
- •40. Первый замечательный предел.
- •41. Второй замечательный предел.
- •42. Непрерывность функции в точке.
- •43. Классификация точек разрыва.
- •44. Теоремы о непрерывных функциях. Непрерывность на отрезке. Равномерная непрерывность.
- •45. Производная функции, ее геометрический и физический смысл.
- •46. Дифференциал функции.
- •Свойства дифференциала.
- •47. Производная и дифференциал сложной функции.
- •48.Правила дифференцирования. Производные основных элементарных функций. Логарифмическое дифференцирование.
- •49. Производные и дифференциалы высших порядков. Производная параметрически заданных функций.
- •51.Монотонность функции. Экстремум. Необходимые и достаточные условия.
- •56. Предел, непрерывность и частные производные функции нескольких переменных.
- •57. Полный дифференциал. Производные высших порядков.
- •58. Касательная плоскость и нормаль к поверхности. Экстремум функции нескольких переменных.
- •59. Условный экстремум функции нескольких переменных. Наибольшее и наименьшее значение функции нескольких переменных в области.
14. Смешанное произведение векторов. Определение. Вычисление. Свойства.
Смешанное произведение 3х векторов равно объёму параллелепипеда, построенного на этих векторах, взятого со знаком + (-), если эти векторы образуют правую (левую) тройку.
Свойства:
1)смешанное произв не меняется при циклической перестановке его множителей.
(
.
2)смешанное произв меняет знак при перемене мест любых букв любых сомножителей
3)смешанное произ ненулевых векторов =0 тога, когда они компланарны.
Смешанное произ векторов = определителю 3-его порядка, составленного из координат перемноженных векторов.
Приложение.
1)определение взаимных ориентаций
векторов в пространстве: если
>0
(
<0),
то правая (левая) тройка векторов![]()
2)комплонарность
векторов:
компланарны,
когда их произв =0.
3)Геометрический
смысл: Vпараллелепипеда=
.Vтр=1/6(
).
Вычисление:
,![]()
![]()

15. Прямая на плоскости.
Простейшей из линий является прямая. Разным способам задания прямой соответствует в прямоугольной система координат разные виды ее уравнений.
Уравнение прямой с угловым коэффициентом:
Пусть:
tg
=k,
,
тогда: y
= kx
+ b.
Число
tg
=k
называется угловым
коэффициентом прямой,
а уравнение – уравнением
прямой с угловым коэффициентом.
2. Уравнение прямой, проходящей через данную точку в данном направлении
Пусть прямая проходит через точку М(Хо,Уо) и ее направление характеризуется угловым коэффициентом к.
![]()
Уравнение с различными значениями к называют также уравнениеми пучка прямых с центром в точке М(Хо,Уо).
3. Уравнение прямой, проходящей через две точки.
,
уравнение прямой, проходящей через две
точки М1(х1,
у1)
и М2(х2,у2)
4. Уравнение прямой в отрезках.
Пусть прямая пересекает ось Ох в точке М1(а,0), а ось Оу – в точке М2(0, b)
В
этом случае уравнение примет вид:![]()
уравнение прямой, проходящей через данную точку перпендикулярно данному вектору.
-
уравнение прямой, проходящей через
заданную точку перпендикулярно заданному
вектору.
5.
нормальное уравнение прямой:
![]()
Угол
между двумя прямыми и условия
параллельности и перпендикулярности
двух прямых:

Расстояние
от точки до прямой:
![]()
16. Плоскость в пространстве.
Простейшей поверхностью является плоскость. Плоскость в пространстве можно задавать различными способами. Каждому из них соответствует определенный вид ее уравнения.
1. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору:
Точка
Мо(Хо, Уо), вектор
![]()
![]()
2. Уравнение плоскости, проходящей через три данные точки:

3.
Нормальное уравнение плоскости:
.
4. Угол между двумя плоскостями:

5. расстояние от точки до плоскости:
![]()
6. Уравнение плоскости в отрезках.
![]()
17. Прямая в пространстве.
1. Канонические уравнения прямой линии в пространстве, или уравнения прямой с направляющими коэффициентами, имеют вид:
.
где x0, y0, z0 - координаты точки, через которую проходит прямая, а m, n и p - направляющие коэффициенты прямой, которые являются проекциями на координатные оси Ox, Oy, Oz направляющего вектора прямой.
2. В параметрическом виде уравнения прямой линии в пространстве записываются так:
.
3. Общие уравнения прямой:
А1х +B1y + C1z + D1=0
A2x + B2y + C2z + D2=0
4.
Векторное уравнение прямой:
![]()
5. уравнение прямой в пространстве, проходящей через две точки:
![]()
6. угол между прямыми:
![]()
18. взаимное расположение плоскостей.
Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей: пусть заданы две плоскости Q1 и Q2:
А1х +B1y + C1z + D1=0
A2x + B2y + C2z + D2=0
Под углом между плоскостями понимается один из двугранных углов, образованных этими плоскостями.
.
Если
плоскости перпендикулярны, то таковы
же их нормали, т.е.
.
Но тогда
,т.е.
A1A2 + B1B2 + C1C2 = 0. Полученное равенство есть условие перпендикулярности двух плоскостей.
Если
плоскости параллельны, то будут
параллельны и их нормали. Но тогда, как
известно, координаты векторов
пропорциональны:
.
Это и естьусловие
параллельности двух плоскостей.
