Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(EOD).Electric circuits.pdf
Скачиваний:
53
Добавлен:
23.08.2013
Размер:
614.65 Кб
Скачать

page 73

6.2.1.6 - Power Factor

• The power factor (p.f.) is a good measure of how well a power source is being used.

 

P

 

P

pf =

-----

 

 

= ----------------------

 

 

S

 

 

 

P2 + Q2

 

 

 

As this value approaches 1 the power consumption becomes entirely real, and the load becomes purely resistive.

• It is common to try to correct power factor values when in industrial settings. For example, if a large motor were connected to a power grid, it would introduce an inductive effect. Capacitors can be added to compensate.

6.2.1.7 - Average Power Calculation

• If we want to find the average power, consider the following,

Pavg

Likewise,

1

T

I

2

( t) Rdt

 

 

= --

 

 

 

 

T

 

0

 

 

 

 

 

 

 

= R

 

1

 

T

2

 

= RI

2

 

--

0

I

 

( t) dt

 

 

T

 

 

 

 

RMS

 

 

 

 

 

 

 

 

 

 

Pavg =

VRMS2

= IRMSVRMS

------------

 

R

 

6.2.1.8 - Maximum Power Transfer

• Consider the thevenin circuit below. We want to find the maximum power transfered from this circuit to the external resistance.

page 74

 

Zs

 

 

Vs

+

ZL

Zs = Rs + jXs

 

 

 

 

-

 

ZL = RL + jXL

 

 

 

 

 

 

 

 

 

 

 

Vs

= ( R

 

Vs

 

 

I = Z----

s---

+-----Z----

L-

s---

+-----R------)----+-----j--(---X---

s----

+-----X------)-

 

 

 

L

L

The average power delivered to the load is,

PL

= ZL

 

I

 

2

 

 

 

 

Vs

 

2

 

 

 

 

 

 

 

 

 

 

 

 

= ( R

 

 

 

 

 

 

 

 

 

 

 

+ jX )

--

-------------------------------------------------------------

 

 

 

 

 

 

 

 

L

 

L

 

( R

s

+ R ) 2

+ j( X

s

+ X ) 2

 

 

 

 

 

 

 

 

 

 

 

L

 

L

 

 

 

 

 

 

V2

( R

L

+ jX )

 

 

 

=

 

 

 

 

 

s

 

 

 

L

 

 

 

 

 

 

 

 

+ R ) 2

+ ( X

 

+ X ) 2

 

 

 

( R

s

s

 

 

 

 

 

 

 

L

 

 

 

L

 

 

 

To find the maximum we can then take a partial derivative for the resistance,

 

Vs2( ( Rs + RL) 2 + ( Xs

+ XL) 2 – 2RL

( Rs

+ RL) )

 

PL

= ------------------------------------------------------------------------------------------------------------

 

 

 

 

= 0

RL

2

2

 

2

 

( ( Rs + RL)

 

 

 

 

 

+ ( Xs + XL) )

 

 

0 = ( Rs + RL) 2 + ( Xs + XL) 2 – 2RL( Rs + RL)

0 = R2L + R2s + 2RLRs + X2L + X2s + 2XLXs – 2R2L – 2RLRs

R2L( –1) + RL( 0) + ( R2s + X2L + X2s + 2XLXs) = 0

RL = R2s + ( XL + Xs) 2