Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(EOD).Electric circuits.pdf
Скачиваний:
51
Добавлен:
23.08.2013
Размер:
614.65 Кб
Скачать

page 52

 

 

 

Zo

 

 

+

 

 

+

 

 

 

+

 

 

 

 

 

Vo

 

-

 

 

 

 

 

 

 

 

 

-

VI

 

 

 

 

AVI

 

Co

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basically this is a voltage divider. We can quickly find the gain,

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

------------

 

 

AVI

V

 

=

( AV )

 

 

 

jω Co

 

=

 

 

 

------------------------

 

 

 

 

---------------------------

 

o

 

 

I

 

Zo

+

1

 

 

jω

CoZo + 1

 

 

 

 

 

 

ω C

 

 

 

 

 

 

 

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

o

 

 

 

Vo

=

 

A

 

 

 

 

 

Gain

 

-----

j---------------------------ω

CoZo

+ 1

 

 

 

VI

 

 

 

 

 

 

Gain

 

 

 

 

 

 

 

 

 

 

 

 

 

(dB)

 

 

 

 

 

 

 

 

 

 

 

 

 

20log(A)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-20 dB/dec.

 

 

 

 

 

 

 

 

ω c

=

 

1

 

log(f)

 

 

 

 

 

 

 

 

C-----------oZo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 TRANSISTORS

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.1 Bipolar Junction Transistors (BJT)

• Bipolar Junction Transistors (BJTs) are made with three layers of doped silicon. The layers are either doped to be positive (p-type) or negative (n-type) using low concentrations of elements

page 53

mixed with the silicon.

• There are two basic types, PNP and NPN. Their names come from the sequence of doped layers in the transistor. The schematic symbols for these transistors are shown below.

 

 

 

collector

base

 

NPN

 

 

 

 

 

 

emitter

 

 

 

 

 

 

 

 

 

 

emitter

base

PNP

collector

The base-emitter voltage is ussualy given as a constant. This junction acts much like a diode, and will on average have voltages around 0.7V.

Transistors are highly non-linear, but they are often biased by carefully applying voltages and currents to put them in a roughly linear range.

A designer will depend heavily upon specifications. These are often in the form of graphs for different transistor applications.

Except for applications such as switching, most transistor configurations are used for sinusoidal signals. As a result there is ussualy a DC design, as well as AC.

5.2.1.1 - Biasing Common Emitter Transistors

• A common emitter configuration is shown in the figure below.

page 54

 

 

 

 

Vs

 

 

 

 

 

 

 

 

 

R1

 

Rc

 

 

 

 

CO

CI

VO

VI

R2

Re

Ce

 

Consider the common emitter amplifier shown. The resistors provide DC biasing to select an operating point. The capacitor Ce is used to allow the AC to bypass Re.

To perform the design we must first bias the transistor using the curves below.

page 55

Ic( mA)

 

 

 

 

 

 

 

Ib = 80µ A

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60µ

A

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40µ

A

4

 

 

 

 

bias point

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20µ

A

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0µ A

 

 

 

 

10

 

 

17

Vce( V)

 

 

 

 

 

 

20

Rc

=

1

=

17V

=

2125

2.2K

 

----------------------------------------

-----------

 

 

 

slope of bias line

 

8mA

 

 

 

 

 

page 56

a reasonable bias point is chosen to be near the center of the linear range, thus giving,

Vce = 9V

Ie = 30µ A

Ic = 4mA

Next we will assume the supply voltage is Vs = 20V. Based on collector current we can determine that

Ve = Vs Vce IcRc

= Ie Re

and

Ie ≈ β Ib

Vs Vce IcRc =β

Ib

 

 

Assuming we find a beta of 100 in the transistor specifications,

( 20V) ( 9V) ( 4mA) ( 2200Ω ) = 100( 30µ A) Re Re = 733Ω ≈ 720

Now, to select values for R1 and R2 we need to calculate Vb using Vbe from the specifications. (0.7V is a typical value).

Vb = Ve + Vbe = IeRe + Vbe = β IbRe + Vbe

 

 

= 100( 30µ A) 720+ 0.7V

 

 

= 2.86V

 

 

 

V

 

= V

 

 

 

 

R2

 

 

 

 

-----------------

 

 

b

 

s

R

1

+ R

 

 

 

 

 

 

 

 

 

2

 

2.86V =

 

20V

 

R2

 

------------------

 

 

 

 

 

 

 

 

R

1

+ R

 

 

 

 

 

 

 

 

 

2

R1 + R2

 

= 7R2

 

 

R1

= 6R2

 

 

 

 

 

The value of either R1 or R2 must be picked. To do this a common rule of thumb is to use a value of R2 that is approximate 10 time Re.

R2 10Re

R2 = 7.2K

R1 = 6( 7.2KΩ ) = 43.2KΩ ≈